Keywords: Circulant matrix; orthogonal matrix; Hadamard matrix; mutually unbiased base
@article{COMIM_2021_29_1_a1,
author = {Contreras, Daniel Uzc\'ategui and Goyeneche, Dardo and Turek, Ond\v{r}ej and V\'aclav{\'\i}kov\'a, Zuzana},
title = {Circulant matrices with orthogonal rows and off-diagonal entries of absolute value $1$},
journal = {Communications in Mathematics},
pages = {15--34},
year = {2021},
volume = {29},
number = {1},
mrnumber = {4251308},
zbl = {07413355},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a1/}
}
TY - JOUR AU - Contreras, Daniel Uzcátegui AU - Goyeneche, Dardo AU - Turek, Ondřej AU - Václavíková, Zuzana TI - Circulant matrices with orthogonal rows and off-diagonal entries of absolute value $1$ JO - Communications in Mathematics PY - 2021 SP - 15 EP - 34 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a1/ LA - en ID - COMIM_2021_29_1_a1 ER -
%0 Journal Article %A Contreras, Daniel Uzcátegui %A Goyeneche, Dardo %A Turek, Ondřej %A Václavíková, Zuzana %T Circulant matrices with orthogonal rows and off-diagonal entries of absolute value $1$ %J Communications in Mathematics %D 2021 %P 15-34 %V 29 %N 1 %U http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a1/ %G en %F COMIM_2021_29_1_a1
Contreras, Daniel Uzcátegui; Goyeneche, Dardo; Turek, Ondřej; Václavíková, Zuzana. Circulant matrices with orthogonal rows and off-diagonal entries of absolute value $1$. Communications in Mathematics, Tome 29 (2021) no. 1, pp. 15-34. http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a1/
[1] Backelin, J.: Square multiples $n$ give infinitely many cyclic $n$-roots. 1989, Stockholms Universitet, Matematiska Institutionen,
[2] Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, and F.: A new proof for the existence of mutually unbiased bases. Algorithmica, 34, 4, 2002, 512-528, Springer, | DOI | MR
[3] Tirkel, S.T. Blake and A.Z.: A construction for perfect periodic autocorrelation sequences. International Conference on Sequences and Their Applications, 2014, 104-108, Springer, | MR
[4] Chu, D.: Polyphase Codes With Good Periodic Correlation Properties. IEEE Transactions on information theory, 18, 4, 1972, 531-532, IEEE, | DOI
[5] Craigen, R., Kharaghani, H.: On the nonexistence of Hermitian circulant complex Hadamard matrices. Australasian Journal of Combi natorics, 7, 1993, 225-228, | MR
[6] Craigen, R.: Trace, symmetry and orthogonality. Canadian Mathematical Bulletin, 37, 4, 1994, 461-467, Cambridge University Press, | DOI | MR
[7] Faugère, J.-C.: Finding all the solutions of Cyclic 9 using Gr{ö}bner basis techniques. Lecture Notes Series on Computing -- Computer Mathematics: Proceedings of the Fifth Asian Symposium (ASCM 2001), 9, 2001, 1-12, World Scientific, | MR
[8] Farnett, E.C., Stevens, G.H.: Pulse Compression Radar. Radar Handbook, 2nd edition, 1990, 10.1-10.39, McGraw-Hill, New York,
[9] Hiranandani, G., Schlenker, J.-M.: Small circulant complex Hadamard matrices of Butson type. European Journal of Combinatorics, 51, 2016, 306-314, Elsevier, | DOI | MR
[10] Heimiller, R.: Phase shift pulse codes with good periodic correlation properties. IRE Transactions on Information Theory, 7, 4, 1961, 254-257, IEEE, | DOI
[11] Ivonovic, I.D.: Geometrical description of quantal state determination. Journal of Physics A: Mathematical and General, 14, 12, 1981, 3241-3245, IOP Publishing, | DOI | MR
[12] Ipatov, V.P.: Spread Spectrum and CDMA: Principles and Applications. 2005, John Wiley & Sons,
[13] Liu, Y., Fan, P.: Modified Chu sequences with smaller alphabet size. Electronics Letters, 40, 10, 2004, 598-599, IET, | DOI
[14] Milewski, A.: Periodic sequences with optimal properties for channel estimation and fast start-up equalization. IBM Journal of Research and Development, 27, 5, 1983, 426-431, IBM, | DOI
[15] Mow, W.H.: A study of correlation of sequences. 1993, PhD Thesis, Department of Information Engineering, The Chinese University of Hong Kong.
[16] Ryser, H.J.: Combinatorial mathematics. The Carus Mathematical Monographs, 14, 1963, The Mathematical Association of America, John Wiley and Sons, Inc., New York, | MR
[17] Scott, A.J.: Tight informationally complete quantum measurements. Journal of Physics A: Mathematical and General, 39, 43, 2006, 13507, IOP Publishing, | DOI | MR
[18] Turek, O., Goyeneche, D.: A generalization of circulant Hadamard and conference matrices. Linear Algebra and its Applications, 569, 2019, 241-265, Elsevier, | DOI | MR
[19] Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Annals of Physics, 191, 2, 1989, 363-381, Elsevier, | DOI | MR
[20] Xu, L.: Phase coded waveform design for Sonar Sensor Network. Conference on Communications and Networking in China (CHINACOM), 2011 6th International ICST, 2011, 251-256, Springer,