Rota-Baxter operators and Bernoulli polynomials
Communications in Mathematics, Tome 29 (2021) no. 1, pp. 1-14 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.
We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.
Classification : 11B68, 16W99
Keywords: Rota-Baxter operator; Bernoulli number; Bernoulli polynomial
@article{COMIM_2021_29_1_a0,
     author = {Gubarev, Vsevolod},
     title = {Rota-Baxter operators and {Bernoulli} polynomials},
     journal = {Communications in Mathematics},
     pages = {1--14},
     year = {2021},
     volume = {29},
     number = {1},
     mrnumber = {4251304},
     zbl = {07413354},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a0/}
}
TY  - JOUR
AU  - Gubarev, Vsevolod
TI  - Rota-Baxter operators and Bernoulli polynomials
JO  - Communications in Mathematics
PY  - 2021
SP  - 1
EP  - 14
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a0/
LA  - en
ID  - COMIM_2021_29_1_a0
ER  - 
%0 Journal Article
%A Gubarev, Vsevolod
%T Rota-Baxter operators and Bernoulli polynomials
%J Communications in Mathematics
%D 2021
%P 1-14
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a0/
%G en
%F COMIM_2021_29_1_a0
Gubarev, Vsevolod. Rota-Baxter operators and Bernoulli polynomials. Communications in Mathematics, Tome 29 (2021) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/COMIM_2021_29_1_a0/

[1] Agoh, T.: On Bernoulli numbers, I. C. R. Math. Rep. Acad. Sci. Canada, 10, 1988, 7-12, | MR

[2] Agoh, T.: Convolution identities for Bernoulli and Genocchi polynomials. Electron. J. Comb., 21, 1, 2014, 1-14, | MR

[3] Agoh, T., Dilcher, K.: Integrals of products of Bernoulli polynomials. J. Math. Anal. Appl., 381, 1, 2011, 10-16, Elsevier, | DOI | MR

[4] Aguiar, M.: Pre-Poisson algebras. Lett. Math. Phys., 54, 4, 2000, 263-277, Springer, | DOI | MR

[5] Atkinson, F.V.: Some aspects of Baxter's functional equation. J. Math. Anal. Appl., 7, 1, 1963, 1-30, Elsevier, | DOI | MR

[6] Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math, 10, 3, 1960, 731-742, | DOI | MR

[7] Belavin, A.A., Drinfel'd, V.G.: Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. Appl., 16, 3, 1982, 159-180, | DOI | MR

[8] Carlitz, L.: Note on the integral of the product of several Bernoulli polynomials. J. London Math. Soc., s1-34, 3, 1959, 361-363, Narnia, | DOI | MR

[9] Cartier, P.: On the structure of free Baxter algebras. Adv. Math., 9, 2, 1972, 253-265, Academic Press, | DOI | MR

[10] Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann--Hilbert problem I: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys., 210, 1, 2000, 249-273, Springer, | DOI | MR

[11] Ebrahimi-Fard, K.: Loday-type algebras and the Rota-Baxter relation. Lett. Math. Phys., 61, 2, 2002, 139-147, Springer, | DOI | MR

[12] Ebrahimi-Fard, K.: Rota-Baxter algebras and the Hopf algebra of renormalization. 2006, Ph.D. Thesis, University of Bonn.

[13] Ebrahimi-Fard, K., Guo, L.: Multiple zeta values and Rota-Baxter algebras. Integers, 8, 2--A4, 2008, 1-18, | MR

[14] Gessel, I.M.: On Miki's identity for Bernoulli numbers. J. Number Theory, 110, 1, 2005, 75-82, Elsevier, | DOI | MR

[15] Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: a foundation for computer science. 1994, Addison-Wesley Professional, Reading (MA, USA), Second ed. | MR

[16] Gubarev, V.: Rota-Baxter operators on unital algebras. Mosc. Math. J., (Accepted) Preprint arXiv:1805.00723v3.

[17] Gubarev, V., Kolesnikov, P.: Embedding of dendriform algebras into Rota-Baxter algebras. Cent. Eur. J. Math. -- Open Mathematics, 11, 2, 2013, 226-245, Versita, | MR

[18] Guo, L.: An introduction to Rota-Baxter algebra. 2012, International Press Somerville, Higher Education Press, Beijing, Surveys of Modern Mathematics, vol. 4.. | MR

[19] Guo, L., Keigher, W.: Baxter algebras and shuffle products. Adv. Math., 150, 1, 2000, 117-149, | DOI | MR

[20] Kim, D.S., Kim, T.: Bernoulli basis and the product of several Bernoulli polynomials. Int. J. Math. Math. Sci., 2012, 2012, 12 pp, Hindawi, | MR

[21] Kim, D.S., Kim, T., Lee, S.-H., Kim, Y.-H.: Some identities for the product of two Bernoulli and Euler polynomials. Adv. Differ. Equ., 2012, 95, 2012, 14 pp, Springer, | MR

[22] Lehmer, D.H.: A new approach to Bernoulli polynomials. Am. Math. Mon., 95, 10, 1988, 905-911, Taylor & Francis, | DOI | MR

[23] Matiyasevich, Yu.: Identities with Bernoulli numbers. 1997, http://logic.pdmi.ras.ru/~yumat/Journal/Bernoulli/bernulli.htm

[24] Miki, H.: A relation between Bernoulli numbers. J. Number Theory, 10, 3, 1978, 297-302, Elsevier, | DOI | MR

[25] Miller, J.B.: Some properties of Baxter operators. Acta Math. Hung., 17, 3-4, 1966, 387-400, Akadémiai Kiadó, co-published with Springer Science+ Business Media BV | MR

[26] Newsome, N.J., Nogin, M.S., Sabuwala, A.H.: A proof of symmetry of the power sum polynomials using a novel Bernoulli number identity. J. Integer Seq., 20, 2, 2017, 10 pp, | MR

[27] Nielsen, N.: Traité élémentaire des nombres de Bernoulli. 1923, Gauthier-Villars,

[28] Ogievetsky, O., Popov, T.: $R$-matrices in rime. Adv. Theor. Math. Phys., 14, 2, 2010, 439-505, | DOI | MR

[29] Ogievetskii, O.V., Schechtman, V.V.: Nombres de Bernoulli et une formule de Schlömilch-Ramanujan. Mosc. Math. J., 10, 4, 2010, 765-788, | DOI | MR

[30] Rota, G.-C.: Baxter algebras and combinatorial identities. I. Bull. Am. Math. Soc., 75, 2, 1969, 325-329, | DOI | MR

[31] Semenov-Tyan-Shanskii, M.A.: What is a classical $r$-matrix?. Funct. Anal. its Appl., 17, 1983, 259-272, | DOI | MR

[32] Sury, B., Wang, T., Zhao, F.-Z.: Identities involving reciprocals of binomial coefficients. J. Integer Seq., 7, 2, 2004, 12 pp, | MR

[33] Tuenter, H.J.H.: A symmetry of power sum polynomials and Bernoulli numbers. Am. Math. Mon., 108, 3, 2001, 258-261, Taylor & Francis, | DOI | MR

[34] Zagier, D.: Curious and exotic identities for Bernoulli numbers (Appendix). Bernoulli numbers and zeta functions, 2014, 239-262, Springer, | MR

[35] Zhao, J.: Multiple zeta functions, multiple polylogarithms and their special values. 2016, World Scientific, Series on Number Theory and Its Applications, vol. 12.. | MR