A simple construction of basic polynomials invariant under the Weyl group of the simple finite-dimensional complex Lie algebra
Communications in Mathematics, Tome 28 (2020) no. 3, pp. 301-305
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For every simple finite-dimensional complex Lie algebra, I give a simple construction of all (except for the Pfaffian) basic polynomials invariant under the Weyl group. The answer is given in terms of the two basic polynomials of smallest degree.
For every simple finite-dimensional complex Lie algebra, I give a simple construction of all (except for the Pfaffian) basic polynomials invariant under the Weyl group. The answer is given in terms of the two basic polynomials of smallest degree.
Classification : 11F22
Keywords: Weyl group; invariant polynomial
@article{COMIM_2020_28_3_a4,
     author = {Perelomov, Askold M.},
     title = {A simple construction of basic polynomials invariant under the {Weyl} group of the simple finite-dimensional complex {Lie} algebra},
     journal = {Communications in Mathematics},
     pages = {301--305},
     year = {2020},
     volume = {28},
     number = {3},
     mrnumber = {4197081},
     zbl = {07426513},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a4/}
}
TY  - JOUR
AU  - Perelomov, Askold M.
TI  - A simple construction of basic polynomials invariant under the Weyl group of the simple finite-dimensional complex Lie algebra
JO  - Communications in Mathematics
PY  - 2020
SP  - 301
EP  - 305
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a4/
LA  - en
ID  - COMIM_2020_28_3_a4
ER  - 
%0 Journal Article
%A Perelomov, Askold M.
%T A simple construction of basic polynomials invariant under the Weyl group of the simple finite-dimensional complex Lie algebra
%J Communications in Mathematics
%D 2020
%P 301-305
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a4/
%G en
%F COMIM_2020_28_3_a4
Perelomov, Askold M. A simple construction of basic polynomials invariant under the Weyl group of the simple finite-dimensional complex Lie algebra. Communications in Mathematics, Tome 28 (2020) no. 3, pp. 301-305. http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a4/

[1] Chevalley, C.: Invariants of finite groups generated by reflections. American Journal of Mathematics, 77, 4, 1955, 778-782, JSTOR, | DOI | MR

[2] Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. American Journal of Mathematics, 81, 1959, 973-1032, | DOI | MR

[3] Macdonald, I.G.: Orthogonal polynomials associated with root systems. Séminaire Lotharingien de Combinatoire, 45, 2000, B45a, | MR

[4] Mehta, M.L.: Basic sets of invariant polynomials for finite reflection groups. Communications in Algebra, 16, 5, 1988, 1083-1098, Taylor & Francis, | DOI | MR

[5] Onishchik, A.L., Vinberg, E.B.: Lie groups and algebraic groups. 1990, Springer, | MR

[6] Racah, G.: Sulla caratterizzazione delle rappresentazioni irriducibili dei gruppi semisemplici di Lie. Lincei-Rend. Sc. fis. mat. e nat, 8, 1950, 108-112, | MR

[7] Witt, E.: Spiegelungsgruppen und aufz{ä}hlung halbeinfacher liescher Ringe. Abhandlungen aus dem mathematischen Seminar der Universit{ä}t Hamburg, 14, 1, 1941, 289-322, Springer, | MR