Reconciliation of discrete and continuous versions of some dynamic inequalities synthesized on time scale calculus
Communications in Mathematics, Tome 28 (2020) no. 3, pp. 277-287 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to synthesize discrete and continuous versions of some dynamic inequalities such as Radon's Inequality, Bergström's Inequality, Schlömilch's Inequality and Rogers-Hölder's Inequality on time scales in comprehensive form.
The aim of this paper is to synthesize discrete and continuous versions of some dynamic inequalities such as Radon's Inequality, Bergström's Inequality, Schlömilch's Inequality and Rogers-Hölder's Inequality on time scales in comprehensive form.
Classification : 26D15, 26D20, 34N05
Keywords: Time scales; Radon's Inequality; Bergström's Inequality; Schlömilch's Inequality; Rogers-Hölder's Inequality.
@article{COMIM_2020_28_3_a2,
     author = {Sahir, Muhammad Jibril Shahab},
     title = {Reconciliation of discrete and continuous versions of some dynamic inequalities synthesized on time scale calculus},
     journal = {Communications in Mathematics},
     pages = {277--287},
     year = {2020},
     volume = {28},
     number = {3},
     mrnumber = {4197079},
     zbl = {1473.26030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a2/}
}
TY  - JOUR
AU  - Sahir, Muhammad Jibril Shahab
TI  - Reconciliation of discrete and continuous versions of some dynamic inequalities synthesized on time scale calculus
JO  - Communications in Mathematics
PY  - 2020
SP  - 277
EP  - 287
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a2/
LA  - en
ID  - COMIM_2020_28_3_a2
ER  - 
%0 Journal Article
%A Sahir, Muhammad Jibril Shahab
%T Reconciliation of discrete and continuous versions of some dynamic inequalities synthesized on time scale calculus
%J Communications in Mathematics
%D 2020
%P 277-287
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a2/
%G en
%F COMIM_2020_28_3_a2
Sahir, Muhammad Jibril Shahab. Reconciliation of discrete and continuous versions of some dynamic inequalities synthesized on time scale calculus. Communications in Mathematics, Tome 28 (2020) no. 3, pp. 277-287. http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a2/

[1] Agarwal, R.P., O'Regan, D., Saker, S.H.: Dynamic Inequalities on Time Scales. 2014, Springer International Publishing, Cham, Switzerland, | MR

[2] Ammi, M.R.S., Torres, D.F.M.: Hölder's and Hardy's two dimensional diamond-alpha inequalities on time scales. Ann. Univ. Craiova, Math. Comp. Sci. Series, 37, 1, 2010, 1-11, | MR

[3] Anderson, D., Bullock, J., Erbe, L., Peterson, A., Tran, H.: Nabla dynamic equations on time scales. Panam. Math. J., 13, 1, 2003, 1-48, | MR

[4] Beckenbach, E.F., Bellman, R.: Inequalities. 1961, Springer, Berlin, Göttingen and Heidelberg, | MR

[5] Bellman, R.: Notes on matrix theory -- IV (An inequality due to Bergström). Amer. Math. Monthly, 62, 3, 1955, 172-173, | DOI | MR

[6] Bergström, H.: A triangle inequality for matrices. In Den Elfte Skandinaviske Matematikerkongress (1949) Trondheim, Johan Grundt Tanums Forlag, Oslo, 1952, 264-267, | MR

[7] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. 2001, Birkhäuser Boston, Inc., Boston, MA, | MR | Zbl

[8] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. 2003, Birkhäuser Boston, Boston, MA, | MR | Zbl

[9] Bătineţu-Giurgiu, D.M., Pop, O.T.: A generalization of Radon's inequality. Creative Math. & Inf., 19, 2, 2010, 116-121, | MR

[10] Bătineţu-Giurgiu, D.M., Stanciu, N.: New generalizations and new approaches for two IMO problems. Journal of Science and Arts, 12, 1, 2012, 25-34, | MR

[11] Bătineţu-Giurgiu, D.M., Mărghidanu, D., Pop, O.T.: A refinement of a Radon type inequality. Creat. Math. Inform., 27, 2, 2018, 115-122, | DOI | MR

[12] Hardy, G.H., Littlewood, J.E., Pölya, G.: Inequalities. 1952, 2nd Ed., Cambridge, University Press, | MR

[13] Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. 1988, Ph.D. Thesis, Universität Würzburg, | Zbl

[14] Hölder, O.: Über einen Mittelwertsatz. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg\-Augusts-Universität zu Göttingen, 1889, 38-47,

[15] Mitrinović , D.S.: Analytic Inequalities. 1970, Springer-Verlag, Berlin, | MR

[16] Radon, J.: Theorie und Anwendungen der absolut additiven Mengenfunktionen. Sitzungsber. Acad. Wissen. Wien, 122, 1913, 1295-1438,

[17] Sahir, M.J.S.: Hybridization of classical inequalities with equivalent dynamic inequalities on time scale calculus. The Teaching of Mathematics, XXI, 1, 2018, 38-52, | MR

[18] Sahir, M.J.S.: Formation of versions of some dynamic inequalities unified on time scale calculus. Ural Math. J., 4, 2, 2018, 88-98, | DOI | MR

[19] Sheng, Q., Fadag, M., Henderson, J., Davis, J.M.: An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Analysis: Real World Appl., 7, 3, 2006, 395-413, | DOI | MR