Deformations of Metrics and Biharmonic Maps
Communications in Mathematics, Tome 28 (2020) no. 3, pp. 263-275 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We construct biharmonic non-harmonic maps between Riemannian manifolds $(M,g)$ and $(N,h)$ by first making the ansatz that $\varphi \colon (M,g) \rightarrow (N,h)$ be a harmonic map and then deforming the metric on $N$ by $$\tilde {h}_{\alpha }=\alpha h+(1-\alpha )df\otimes df$$ to render $\varphi $ biharmonic, where $f$ is a smooth function with gradient of constant norm on $(N,h)$ and $\alpha \in (0,1)$. We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.
We construct biharmonic non-harmonic maps between Riemannian manifolds $(M,g)$ and $(N,h)$ by first making the ansatz that $\varphi \colon (M,g) \rightarrow (N,h)$ be a harmonic map and then deforming the metric on $N$ by $$\tilde {h}_{\alpha }=\alpha h+(1-\alpha )df\otimes df$$ to render $\varphi $ biharmonic, where $f$ is a smooth function with gradient of constant norm on $(N,h)$ and $\alpha \in (0,1)$. We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.
Classification : 53C20, 53C22, 58E20
Keywords: Riemannian geometry; Harmonic maps; Biharmonic maps
@article{COMIM_2020_28_3_a1,
     author = {Benkartab, Aicha and Cherif, Ahmed Mohammed},
     title = {Deformations of {Metrics} and {Biharmonic} {Maps}},
     journal = {Communications in Mathematics},
     pages = {263--275},
     year = {2020},
     volume = {28},
     number = {3},
     mrnumber = {4197078},
     zbl = {1480.53051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a1/}
}
TY  - JOUR
AU  - Benkartab, Aicha
AU  - Cherif, Ahmed Mohammed
TI  - Deformations of Metrics and Biharmonic Maps
JO  - Communications in Mathematics
PY  - 2020
SP  - 263
EP  - 275
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a1/
LA  - en
ID  - COMIM_2020_28_3_a1
ER  - 
%0 Journal Article
%A Benkartab, Aicha
%A Cherif, Ahmed Mohammed
%T Deformations of Metrics and Biharmonic Maps
%J Communications in Mathematics
%D 2020
%P 263-275
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a1/
%G en
%F COMIM_2020_28_3_a1
Benkartab, Aicha; Cherif, Ahmed Mohammed. Deformations of Metrics and Biharmonic Maps. Communications in Mathematics, Tome 28 (2020) no. 3, pp. 263-275. http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a1/

[1] Baird, P., Fardoun, A., Ouakkas, S.: Conformal and semi-conformal biharmonic maps. Annals of Global Analysis and Geometry, 34, 4, 2008, 403-414, Springer, | DOI | MR

[2] Baird, P., Kamissoko, D.: On constructing biharmonic maps and metrics. Annals of Global Analysis and Geometry, 23, 1, 2003, 65-75, Springer, | DOI | MR

[3] Baird, P., Wood, J.C.: Harmonic morphisms between Riemannian manifolds. 29, 2003, Oxford University Press, | MR

[4] Benkartab, A., Cherif, A.M.: New methods of construction for biharmonic maps. Kyungpook Mathematical Journal, 59, 1, 2019, 135-147, Department of Mathematics, Kyungpook National University, | MR

[5] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of $\mathbb {S}^{3}$. International Journal of Mathematics, 12, 08, 2001, 867-876, World Scientific, | MR

[6] Eells, J., Lemaire, L.: A report on harmonic maps. Bulletin of the London Mathematical Society, 10, 1, 1978, 1-68, Citeseer, | DOI | MR | Zbl

[7] Eells, J., Lemaire, L.: Another report on harmonic maps. Bulletin of the London Mathematical Society, 20, 5, 1988, 385-524, Oxford University Press, | DOI | MR | Zbl

[8] Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. American Journal of Mathematics, 86, 1, 1964, 109-160, JSTOR, | DOI | MR | Zbl

[9] K{ö}rpinar, T., Turhan, E.: Tubular surfaces around timelike biharmonic curves in Lorentzian Heisenberg group $\operatorname {Heis}^3$. Analele Universitatii ``Ovidius" Constanta -- Seria Matematica, 20, 1, 2012, 431-446, Sciendo, | MR

[10] Oniciuc, C.: New examples of biharmonic maps in spheres. Colloquium Mathematicum, 97, 1, 2003, 131-139, | DOI | MR

[11] Ouakkas, S.: Biharmonic maps, conformal deformations and the Hopf maps. Differential Geometry and its Applications, 26, 5, 2008, 495-502, Elsevier, | DOI | MR

[12] Jiang, G.Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A, 7, 4, 1986, 389-402, | MR

[13] O'Neill, B.: Semi-Riemannian geometry with applications to relativity. 1983, Academic Press, | MR

[14] Sakai, T.: Riemannian geometry. 1992, Shokabo, Tokyo, (in Japanese). | MR