Keywords: Riemannian geometry; Harmonic maps; Biharmonic maps
@article{COMIM_2020_28_3_a1,
author = {Benkartab, Aicha and Cherif, Ahmed Mohammed},
title = {Deformations of {Metrics} and {Biharmonic} {Maps}},
journal = {Communications in Mathematics},
pages = {263--275},
year = {2020},
volume = {28},
number = {3},
mrnumber = {4197078},
zbl = {1480.53051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a1/}
}
Benkartab, Aicha; Cherif, Ahmed Mohammed. Deformations of Metrics and Biharmonic Maps. Communications in Mathematics, Tome 28 (2020) no. 3, pp. 263-275. http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a1/
[1] Baird, P., Fardoun, A., Ouakkas, S.: Conformal and semi-conformal biharmonic maps. Annals of Global Analysis and Geometry, 34, 4, 2008, 403-414, Springer, | DOI | MR
[2] Baird, P., Kamissoko, D.: On constructing biharmonic maps and metrics. Annals of Global Analysis and Geometry, 23, 1, 2003, 65-75, Springer, | DOI | MR
[3] Baird, P., Wood, J.C.: Harmonic morphisms between Riemannian manifolds. 29, 2003, Oxford University Press, | MR
[4] Benkartab, A., Cherif, A.M.: New methods of construction for biharmonic maps. Kyungpook Mathematical Journal, 59, 1, 2019, 135-147, Department of Mathematics, Kyungpook National University, | MR
[5] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of $\mathbb {S}^{3}$. International Journal of Mathematics, 12, 08, 2001, 867-876, World Scientific, | MR
[6] Eells, J., Lemaire, L.: A report on harmonic maps. Bulletin of the London Mathematical Society, 10, 1, 1978, 1-68, Citeseer, | DOI | MR | Zbl
[7] Eells, J., Lemaire, L.: Another report on harmonic maps. Bulletin of the London Mathematical Society, 20, 5, 1988, 385-524, Oxford University Press, | DOI | MR | Zbl
[8] Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. American Journal of Mathematics, 86, 1, 1964, 109-160, JSTOR, | DOI | MR | Zbl
[9] K{ö}rpinar, T., Turhan, E.: Tubular surfaces around timelike biharmonic curves in Lorentzian Heisenberg group $\operatorname {Heis}^3$. Analele Universitatii ``Ovidius" Constanta -- Seria Matematica, 20, 1, 2012, 431-446, Sciendo, | MR
[10] Oniciuc, C.: New examples of biharmonic maps in spheres. Colloquium Mathematicum, 97, 1, 2003, 131-139, | DOI | MR
[11] Ouakkas, S.: Biharmonic maps, conformal deformations and the Hopf maps. Differential Geometry and its Applications, 26, 5, 2008, 495-502, Elsevier, | DOI | MR
[12] Jiang, G.Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A, 7, 4, 1986, 389-402, | MR
[13] O'Neill, B.: Semi-Riemannian geometry with applications to relativity. 1983, Academic Press, | MR
[14] Sakai, T.: Riemannian geometry. 1992, Shokabo, Tokyo, (in Japanese). | MR