On a question of Schmidt and Summerer concerning $3$-systems
Communications in Mathematics, Tome 28 (2020) no. 3, pp. 253-262
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Following a suggestion of W.M. Schmidt and L. Summerer, we construct a proper $3$-system $(P_{1},P_{2},P_{3})$ with the property $\overline {\varphi }_{3}=1$. In fact, our method generalizes to provide $n$-systems with $\overline {\varphi }_{n}=1$, for arbitrary $n\geq 3$. We visualize our constructions with graphics. We further present explicit examples of numbers $\xi _{1}, \ldots , \xi _{n-1}$ that induce the $n$-systems in question.
Following a suggestion of W.M. Schmidt and L. Summerer, we construct a proper $3$-system $(P_{1},P_{2},P_{3})$ with the property $\overline {\varphi }_{3}=1$. In fact, our method generalizes to provide $n$-systems with $\overline {\varphi }_{n}=1$, for arbitrary $n\geq 3$. We visualize our constructions with graphics. We further present explicit examples of numbers $\xi _{1}, \ldots , \xi _{n-1}$ that induce the $n$-systems in question.
Classification : 11H06, 11J13
Keywords: parametric geometry of numbers; simultaneous approximation
@article{COMIM_2020_28_3_a0,
     author = {Schleischitz, Johannes},
     title = {On a question of {Schmidt} and {Summerer} concerning $3$-systems},
     journal = {Communications in Mathematics},
     pages = {253--262},
     year = {2020},
     volume = {28},
     number = {3},
     mrnumber = {4197077},
     zbl = {1475.11131},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a0/}
}
TY  - JOUR
AU  - Schleischitz, Johannes
TI  - On a question of Schmidt and Summerer concerning $3$-systems
JO  - Communications in Mathematics
PY  - 2020
SP  - 253
EP  - 262
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a0/
LA  - en
ID  - COMIM_2020_28_3_a0
ER  - 
%0 Journal Article
%A Schleischitz, Johannes
%T On a question of Schmidt and Summerer concerning $3$-systems
%J Communications in Mathematics
%D 2020
%P 253-262
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a0/
%G en
%F COMIM_2020_28_3_a0
Schleischitz, Johannes. On a question of Schmidt and Summerer concerning $3$-systems. Communications in Mathematics, Tome 28 (2020) no. 3, pp. 253-262. http://geodesic.mathdoc.fr/item/COMIM_2020_28_3_a0/

[1] Laurent, M.: Exponents of Diophantine approximation in dimension two. Canadian Journal of Mathematics, 61, 1, 2009, 165-189, Cambridge University Press, | DOI | MR

[2] Roy, D.: On Schmidt and Summerer parametric geometry of numbers. Annals of Mathematics, 2015, 739-786, JSTOR, | DOI | MR

[3] Roy, D.: On the topology of Diophantine approximation spectra. Compositio Mathematica, 153, 7, 2017, 1512-1546, London Mathematical Society, | DOI | MR

[4] Schleischitz, J.: Diophantine approximation and special Liouville numbers. Communications in Mathematics, 21, 1, 2013, 39-76, | MR

[5] Schleischitz, J.: On approximation constants for Liouville numbers. Glasnik matematički, 50, 2, 2015, 349-361, Hrvatsko matematičko društvo i PMF-Matematički odjel, Sveučilišta u Zagrebu,

[6] Schmidt, W.M., Summerer, L.: Parametric geometry of numbers and applications. Acta Arithmetica, 140, 2009, 67-91, Instytut Matematyczny Polskiej Akademii Nauk, | Zbl

[7] Schmidt, W.M., Summerer, L.: Diophantine approximation and parametric geometry of numbers. Monatshefte für Mathematik, 169, 1, 2013, 51-104, Springer, | DOI | MR

[8] Schmidt, W.M., Summerer, L.: Simultaneous approximation to three numbers. Moscow Journal of Combinatorics and Number Theory, 3, 1, 2013, 84-107, | MR

[9] Schmidt, W.M., Summerer, L.: Simultaneous approximation to two reals: bounds for the second successive minimum. Mathematika, 63, 3, 2017, 1136-1151, Wiley Online Library, | DOI | MR