Keywords: Conservative algebra; Jordan algebra; Tits-Koecher-Kantor construction; terminal algebra.
@article{COMIM_2020_28_2_a8,
author = {Popov, Yury},
title = {Conservative algebras and superalgebras: a survey},
journal = {Communications in Mathematics},
pages = {231--251},
year = {2020},
volume = {28},
number = {2},
mrnumber = {4162931},
zbl = {07300191},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a8/}
}
Popov, Yury. Conservative algebras and superalgebras: a survey. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 231-251. http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a8/
[1] Allison, B.: A class of nonassociative algebras with involution containing the class of Jordan algebras. Mathematische Annalen, 237, 2, 1978, 133-156, | DOI | MR
[2] Allison, B., Hein, W.: Isotopes of some nonassociative algebras with involution. Journal of Algebra, 69, 1981, 120-142, | DOI | MR
[3] Birkhoff, G.: On the structure of abstract algebras. Mathematical Proceedings of the Cambridge Philosophical Society, 31, 4, 1935, 433-454, | DOI | Zbl
[4] Martín, A. Calderón, Ouaridi, A. Fernández, Kaygorodov, I.: The classification of $2$-dimensional rigid algebras. Linear and Multilinear Algebra, 68, 4, 2020, 828-844, | DOI | MR
[5] Cantarini, N., Kac, V.: Classification of linearly compact simple rigid superalgebras. International Mathematics Research Notices, 17, 2010, 3341-3393, | MR
[6] Cantarini, N., Kac, V.: Classification of simple linearly compact $n$-Lie superalgebras. Communications in Mathematical Physics, 298, 3, 2010, 833-853, | DOI | MR | Zbl
[7] Cantarini, N., Kac, V.: Classification of simple linearly compact $N=6$ 3-algebras. Transformation Groups, 16, 3, 2011, 649-671, | DOI | MR
[8] Jacobson, N.: Structure and Representations of Jordan Algebras. 1969, American Mathematical Society, Providence, R.I, | MR
[9] Kac, V.: Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras. Communications in Algebra, 13, 5, 1977, 1375-1400, | DOI | MR
[10] Kantor, I.: Graded Lie algebras (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 15, 1970, 227-266, | MR
[11] Kantor, I.: Certain generalizations of Jordan algebras (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 16, 1972, 407-499, | MR
[12] Kantor, I.: A universal graded Lie superalgebra (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 20, 1981, 162-175, | MR
[13] Kantor, I.: On an extension of a class of Jordan algebras. Algebra and Logic, 28, 2, 1989, 117-121, | DOI | MR
[14] Kantor, I.: Some problems in $\mathfrak {L}$-functor theory (Russian). Algebra and Logic, 16, 1989, 54-75, | MR
[15] Kantor, I.: Terminal trilinear operations. Algebra and Logic, 28, 1, 1989, 25-40, | DOI | MR
[16] Kantor, I.: An universal conservative algebra. Siberian Mathematical Journal, 31, 3, 1990, 388-395, | DOI | MR
[17] Kaygorodov, I.: On the Kantor product. Journal of Algebra and Its Applications, 16, 5, 2017, | DOI | MR
[18] Kaygorodov, I., Khrypchenko, M., Popov, Yu.: The algebraic and geometric classification of nilpotent terminal algebras. arXiv:1909.00358, 2019, | MR
[19] Kaygorodov, I., Khudoyberdiyev, A., Sattarov, A.: One generated nilpotent terminal algebras. Communications in Algebra, 48, 10, 2020, 4355-4390, | DOI | MR
[20] Kaygorodov, I., Lopatin, A., Popov, Yu.: Conservative algebras of $2$-dimensional algebras. Linear Algebra and its Applications, 486, 2015, 255-274, | DOI | MR
[21] Kaygorodov, I., Popov, Yu., Pozhidaev, A.: The universal conservative superalgebra. Communications in Algebra, 47, 10, 2019, 4064-4074, | DOI | MR
[22] Kaygorodov, I., Volkov, Yu.: Conservative algebras of $2$-dimensional algebras, II. Communications in Algebra, 45, 8, 2017, 3413-3421, | MR
[23] Loos, O.: Jordan Pairs, Lecture Notes in Mathematics. 1975, Springer Verlag, Berlin, | MR
[24] Martínez, C., Zelmanov, E.: Representation theory for Jordan superalgebras I. Transactions of the American Mathematical Society, 362, 2, 2010, 815-846, | DOI | MR
[25] Meyberg, K.: Lectures on Algebras and Triple Systems. 1972, Lecture notes, University of Virginia, Charlottesville, | MR
[26] Popov, Yu.: Representations of noncommutative Jordan superalgebras I. Journal of Algebra, 544, 2020, 329-390, | DOI | MR
[27] Pozhidaev, A., Shestakov, I.: Structurable superalgebras of Cartan type. Journal of Algebra, 323, 2010, 3230-3251, | DOI | MR
[28] Smirnov, O.: Simple and semisimple structurable algebras. Algebra and Logic, 29, 5, 1990, 377-379, | DOI | MR