On tangent cones to Schubert varieties in type $E$
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 179-197
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider tangent cones to Schubert subvarieties of the flag variety $G/B$, where $B$ is a Borel subgroup of a reductive complex algebraic group $G$ of type $E_6$, $E_7$ or $E_8$. We prove that if $w_1$ and $w_2$ form a good pair of involutions in the Weyl group $W$ of $G$ then the tangent cones $C_{w_1}$ and $C_{w_2}$ to the corresponding Schubert subvarieties of $G/B$ do not coincide as subschemes of the tangent space to $G/B$ at the neutral point.
We consider tangent cones to Schubert subvarieties of the flag variety $G/B$, where $B$ is a Borel subgroup of a reductive complex algebraic group $G$ of type $E_6$, $E_7$ or $E_8$. We prove that if $w_1$ and $w_2$ form a good pair of involutions in the Weyl group $W$ of $G$ then the tangent cones $C_{w_1}$ and $C_{w_2}$ to the corresponding Schubert subvarieties of $G/B$ do not coincide as subschemes of the tangent space to $G/B$ at the neutral point.
Classification : 14M15, 17B22
Keywords: flag variety; Schubert variety; tangent cone; involution in the Weyl group; Kostant-Kumar polynomial
@article{COMIM_2020_28_2_a6,
     author = {Ignatyev, Mikhail V. and Shevchenko, Aleksandr A.},
     title = {On tangent cones to {Schubert} varieties in type $E$},
     journal = {Communications in Mathematics},
     pages = {179--197},
     year = {2020},
     volume = {28},
     number = {2},
     mrnumber = {4162929},
     zbl = {07300189},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a6/}
}
TY  - JOUR
AU  - Ignatyev, Mikhail V.
AU  - Shevchenko, Aleksandr A.
TI  - On tangent cones to Schubert varieties in type $E$
JO  - Communications in Mathematics
PY  - 2020
SP  - 179
EP  - 197
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a6/
LA  - en
ID  - COMIM_2020_28_2_a6
ER  - 
%0 Journal Article
%A Ignatyev, Mikhail V.
%A Shevchenko, Aleksandr A.
%T On tangent cones to Schubert varieties in type $E$
%J Communications in Mathematics
%D 2020
%P 179-197
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a6/
%G en
%F COMIM_2020_28_2_a6
Ignatyev, Mikhail V.; Shevchenko, Aleksandr A. On tangent cones to Schubert varieties in type $E$. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 179-197. http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a6/

[1] Billey, S.C.: Kostant polynomials and the cohomology ring for $G/B$. Duke Mathematical Journal, 96, 1, 1999, 205-224, Citeseer, | DOI | MR

[2] Bjorner, A., Brenti, F.: Combinatorics of Coxeter groups. 231, 2005, Springer Science & Business Media, Graduate Texts in Mathematics {231}. | MR

[3] Bochkarev, M.A., Ignatyev, M.V., Shevchenko, A.A.: Tangent cones to Schubert varieties in types $A_n$, $B_n$ and $C_n$. Journal of Algebra, 465, 2016, 259-286, Elsevier, | DOI | MR

[4] Bourbaki, N.: Lie groups and Lie algebras. Chapters 4--6. 2002, Springer-Verlag, Berlin, Translated from the 1968 French original. | MR

[5] Sarason, I.G., Billey, S., Sarason, S., Lakshmibai, V.: Singular loci of Schubert varieties. 182, 2000, Springer Science & Business Media, | MR

[6] Deodhar, V.V.: On the root system of a Coxeter group. Communications in Algebra, 10, 6, 1982, 611-630, Taylor & Francis, | DOI | MR

[7] Dyer, M.J.: The nil Hecke ring and Deodhar's conjecture on Bruhat intervals. Inventiones Mathematicae, 111, 1, 1993, 571-574, Springer, | DOI | MR

[8] Eliseev, D.Yu., Panov, A.N.: Tangent cones of Schubert varieties for $A_n$ of lower rank (in Russian). Zapiski Nauchnykh Seminarov POMI, 394, 2011, 218-225, St. Petersburg Department of Steklov Institute of Mathematics, Russian, English transl.: Journal of Mathematical Sciences 188 (5) (2013), 596--600.. | MR

[9] Eliseev, D.Yu., Ignatyev, M.V.: Kostant-Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$ (in Russian). Zapiski Nauchnykh Seminarov POMI, 414, 2013, 82-105, Springer, English transl.: Journal of Mathematical Sciences {199} (3) (2014), 289--301.. | MR

[10] Humphreys, J.E.: Linear algebraic groups. 1975, Springer, | MR

[11] Humphreys, J.E.: Reflection groups and Coxeter groups. 1992, Cambridge University Press, | MR

[12] Ignatyev, M.V., Shevchenko, A.A.: On tangent cones to Schubert varieties in type $D_n$ (in Russian). Algebra i Analiz, 27, 4, 2015, 28-49, English transl.: St. Petersburg Mathematical Journal 27 (4) (2016), 609--623.. | MR

[13] Kostant, B., Kumar, S.: The nil Hecke ring and cohomology of $G/P$ for a Kac-Moody group $G$. Proceedings of the National Academy of Sciences, 83, 6, 1986, 1543-1545, National Acad Sciences, | MR

[14] Kostant, B., Kumar, S.: $T$-equivariant $K$-theory of generalized flag varieties. Journal of Differential Geometry, 32, 2, 1990, 549-603, Lehigh University, | MR

[15] Kumar, S.: The nil Hecke ring and singularity of Schubert varieties. Inventiones Mathematicae, 123, 3, 1996, 471-506, Springer, | DOI | MR

[16] Springer, T.A.: Some remarks on involutions in Coxeter groups. Communications in Algebra, 10, 6, 1982, 631-636, Taylor & Francis, | DOI | MR

[17] al., W.A. Stein et: Sage Mathematics Software (Version 9.1). 2020, The Sage {Development} Team, Available at { http://www.sagemath.org}