The variety of dual mock-Lie algebras
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 161-178 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We classify all complex $7$- and $8$-dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex $9$-dimensional dual mock-Lie algebras.
We classify all complex $7$- and $8$-dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex $9$-dimensional dual mock-Lie algebras.
Classification : 14D06, 14L30, 17A30
Keywords: Nilpotent algebra; mock-Lie algebra; dual mock-Lie algebra; anticommutative algebra; algebraic classification; geometric classification; central extension; degeneration
@article{COMIM_2020_28_2_a5,
     author = {Camacho, Luisa M. and Kaygorodov, Ivan and Lopatkin, Viktor and Salim, Mohamed A.},
     title = {The variety of dual {mock-Lie} algebras},
     journal = {Communications in Mathematics},
     pages = {161--178},
     year = {2020},
     volume = {28},
     number = {2},
     mrnumber = {4162928},
     zbl = {07300188},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a5/}
}
TY  - JOUR
AU  - Camacho, Luisa M.
AU  - Kaygorodov, Ivan
AU  - Lopatkin, Viktor
AU  - Salim, Mohamed A.
TI  - The variety of dual mock-Lie algebras
JO  - Communications in Mathematics
PY  - 2020
SP  - 161
EP  - 178
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a5/
LA  - en
ID  - COMIM_2020_28_2_a5
ER  - 
%0 Journal Article
%A Camacho, Luisa M.
%A Kaygorodov, Ivan
%A Lopatkin, Viktor
%A Salim, Mohamed A.
%T The variety of dual mock-Lie algebras
%J Communications in Mathematics
%D 2020
%P 161-178
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a5/
%G en
%F COMIM_2020_28_2_a5
Camacho, Luisa M.; Kaygorodov, Ivan; Lopatkin, Viktor; Salim, Mohamed A. The variety of dual mock-Lie algebras. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 161-178. http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a5/

[1] Abdelwahab, H., Calderón, A.J., Kaygorodov, I.: The algebraic and geometric classification of nilpotent binary Lie algebras. International Journal of Algebra and Computation, 29, 6, 2019, 1113-1129, | DOI | MR

[2] Alvarez, M.A.: On rigid $2$-step nilpotent Lie algebras. Algebra Colloquium, 25, 02, 2018, 349-360, | DOI | MR

[3] Alvarez, M.A.: The variety of $7$-dimensional $2$-step nilpotent Lie algebras. Symmetry, 10, 1, 2018, 26, Multidisciplinary Digital Publishing Institute,

[4] Burde, D., Fialowski, A.: Jacobi--Jordan algebras. Linear Algebra and its Applications, 459, 2014, 586-594, Elsevier, | MR

[5] Burde, D., Steinhoff, C.: Classification of orbit closures of $4$-dimensional complex Lie algebras. Journal of Algebra, 214, 2, 1999, 729-739, Academic Press, | DOI | MR

[6] Cicalò , S., Graaf, W. De, Schneider, C.: Six-dimensional nilpotent Lie algebras. Linear Algebra and its Applications, 436, 1, 2012, 163-189, Elsevier, | DOI | MR

[7] Darijani, I., Usefi, H.: The classification of 5-dimensional p-nilpotent restricted Lie algebras over perfect fields, I. Journal of Algebra, 464, 2016, 97-140, Elsevier, | DOI | MR

[8] Graaf, W.A. De: Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not $2$. Journal of Algebra, 309, 2, 2007, 640-653, Elsevier, | DOI | MR

[9] Graaf, W.A. De: Classification of nilpotent associative algebras of small dimension. International Journal of Algebra and Computation, 28, 01, 2018, 133-161, World Scientific, | MR

[10] Ouaridi, A. Fernandez, Kaygorodov, I., Khrypchenko, M., Yu. Volkov: Degenerations of nilpotent algebras. arXiv:1905.05361.

[11] Gorshkov, I., Kaygorodov, I., Khrypchenko, M.: The geometric classification of nilpotent Tortkara algebras. Communications in Algebra, 48, 1, 2020, 204-209, Taylor & Francis, | DOI | MR

[12] Grunewald, F., O'Halloran, J.: Varieties of nilpotent Lie algebras of dimension less than six. Journal of Algebra, 112, 2, 1988, 315-325, Academic Press, | DOI | MR

[13] Grunewald, F., O'Halloran, J.: A characterization of orbit closure and applications. Journal of Algebra, 116, 1, 1988, 163-175, Elsevier, | DOI | MR

[14] Hegazi, A.S., Abdelwahab, H.: Classification of five-dimensional nilpotent Jordan algebras. Linear Algebra and its Applications, 494, 2016, 165-218, Elsevier, | DOI | MR

[15] Hegazi, A.S., Abdelwahab, H., Martin, A.J. Calderon: The classification of $N$-dimensional non-Lie Malcev algebras with $(N-4)$-dimensional annihilator. Linear Algebra and its Applications, 505, 2016, 32-56, Elsevier, | DOI | MR

[16] Ismailov, N., Kaygorodov, I., Mashurov, F.: The algebraic and geometric classification of nilpotent assosymmetric algebras. Algebras and Representation Theory, 2020, 14 pp, Springer, DOI: 10.1007/s10468-019-09935-y. | DOI | MR

[17] Ismailov, N., Kaygorodov, I., Yu. Volkov: The geometric classification of Leibniz algebras. International Journal of Mathematics, 29, 05, 2018, Article 1850035, World Scientific, | DOI | MR

[18] Ismailov, N., Kaygorodov, I., Yu. Volkov: Degenerations of Leibniz and anticommutative algebras. Canadian Mathematical Bulletin, 62, 3, 2019, 539-549, Canadian Mathematical Society, | DOI | MR

[19] Karimjanov, I., Kaygorodov, I., Khudoyberdiyev, A.: The algebraic and geometric classification of nilpotent Novikov algebras. Journal of Geometry and Physics, 143, 2019, 11-21, Elsevier, | DOI | MR

[20] Kaygorodov, I., Khrypchenko, M., Lopes, S.: The algebraic and geometric classification of nilpotent anticommutative algebras. Journal of Pure and Applied Algebra, 224, 8, 2020, Article 106337, | MR

[21] Kaygorodov, I., Yu. Popov, Yu. Volkov: Degenerations of binary Lie and nilpotent Malcev algebras. Communications in Algebra, 46, 11, 2018, 4928-4940, Taylor & Francis, | DOI | MR

[22] Kaygorodov, I., Yu. Volkov: The Variety of Two-dimensional Algebras Over an Algebraically Closed Field. Canadian Journal of Mathematics, 71, 4, 2019, 819-842, Canadian Mathematical Society, | DOI | MR

[23] Kaygorodov, I., Yu. Volkov: Complete classification of algebras of level two. Moscow Mathematical Journal, 19, 3, 2019, 485-521, | DOI | MR

[24] Okubo, S., Kamiya, N.: Jordan--Lie super algebra and Jordan--Lie triple system. Journal of Algebra, 198, 2, 1997, 388-411, Elsevier, | DOI | MR

[25] Ren, B., Zhu, L.S.: Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center. Czechoslovak Mathematical Journal, 67, 4, 2017, 953-965, Springer, | DOI | MR

[26] Seeley, C.: Degenerations of 6-dimensional nilpotent Lie algebras over $\mathbb {C}$. Communications in Algebra, 18, 10, 1990, 3493-3505, Taylor & Francis, | DOI | MR

[27] Skjelbred, T., Sund, T.: Sur la classification des algèbres de Lie nilpotentes. Comptes rendus de l'Académie des Sciences, 286, 5, 1978, A241-A242, | MR

[28] Zhevlakov, K.A.: Solvability and nilpotency of Jordan rings. Algebra i Logika, 5, 3, 1966, 37-58, | MR

[29] Zusmanovich, P.: Central extensions of current algebras. Transactions of the American Mathematical Society, 334, 1, 1992, 143-152, | DOI | MR

[30] Zusmanovich, P.: Special and exceptional mock-Lie algebras. Linear Algebra and its Applications, 518, 2017, 79-96, Elsevier, | DOI | MR