Lie commutators in a free diassociative algebra
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 155-160 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generalizes the Dynkin-Specht-Wever criterion for Lie elements in a free associative algebra.
We give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generalizes the Dynkin-Specht-Wever criterion for Lie elements in a free associative algebra.
Classification : 17A30, 17A50
Keywords: Diassociative algebars; Leibniz elements; Dynkin-Specht-Wever criterion
@article{COMIM_2020_28_2_a4,
     author = {Dzhumadil'daev, A.S. and Ismailov, N.A. and Orazgaliyev, A.T.},
     title = {Lie commutators in a free diassociative algebra},
     journal = {Communications in Mathematics},
     pages = {155--160},
     year = {2020},
     volume = {28},
     number = {2},
     mrnumber = {4162927},
     zbl = {07300187},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a4/}
}
TY  - JOUR
AU  - Dzhumadil'daev, A.S.
AU  - Ismailov, N.A.
AU  - Orazgaliyev, A.T.
TI  - Lie commutators in a free diassociative algebra
JO  - Communications in Mathematics
PY  - 2020
SP  - 155
EP  - 160
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a4/
LA  - en
ID  - COMIM_2020_28_2_a4
ER  - 
%0 Journal Article
%A Dzhumadil'daev, A.S.
%A Ismailov, N.A.
%A Orazgaliyev, A.T.
%T Lie commutators in a free diassociative algebra
%J Communications in Mathematics
%D 2020
%P 155-160
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a4/
%G en
%F COMIM_2020_28_2_a4
Dzhumadil'daev, A.S.; Ismailov, N.A.; Orazgaliyev, A.T. Lie commutators in a free diassociative algebra. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 155-160. http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a4/

[1] Bloch, A.: A generalization of the concept of a Lie algebra. Doklady Akademii Nauk -- Russian Academy of Sciences, 165, 3, 1965, 471-473, | MR

[2] Bremner, M.R., Dotsenko, V.: Bilinear operations in the diassociative operad. preprint.

[3] Demir, I., Misra, K.C., Stitzinger, E.: On some structures of Leibniz algebras. Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, Contemporary Mathematics, 623, 2014, 41-54, | MR

[4] Jacobson, N.: Lie algebras. 1962, Interscience Publishers, Wiley, New York, | MR | Zbl

[5] Loday, J.-L.: Une version non commutative des algébres de Lie: Les algébres de Leibniz. L'Enseignement Mathématique, 39, 2, 1993, 269-293, | MR

[6] Loday, J.-L.: Algébres ayant deux opérations associatives: les digébres. Comptes rendus de l'Académie des Sciences, 321, 1995, 141-146, | MR

[7] Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)-homology. Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag, | DOI | MR

[8] Loday, J.-L.: Dialgebras. 2001, 7-66, Springer-Verlag, Berlin, Chapter in: Dialgebras and related operads, Lecture Notes in Mathematics, Vol. 1763, J.-L. Loday, F. Chapoton, F. Goichot, and A. Frabetti. | DOI | MR