Keywords: Einstein metric; symplectic triple system; homogeneous manifold; curvature; 3\discretionary-Sasakian manifold; Freudenthal triple system
@article{COMIM_2020_28_2_a3,
author = {Fontanals, Cristina Draper},
title = {Homogeneous {Einstein} manifolds based on symplectic triple systems},
journal = {Communications in Mathematics},
pages = {139--154},
year = {2020},
volume = {28},
number = {2},
mrnumber = {4162926},
zbl = {07300186},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a3/}
}
Fontanals, Cristina Draper. Homogeneous Einstein manifolds based on symplectic triple systems. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 139-154. http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a3/
[1] Alekseevski, D.V.: Homogeneous Einstein metrics. Differential Geometry and its Applications (Proccedings of the Conference), 1987, 1-21, Univ. J. E. Purkyně, Brno, | MR
[2] Alekseevsky, D.V., Cortés, V.: The twistor spaces of a para-quaternionic K{ä}hler manifold. Osaka Journal of Mathematics, 45, 1, 2008, 215-251, Osaka University and Osaka City University, Departments of Mathematics, | MR
[3] Arvanitoyeorgos, A., Chrysikos, I.: Invariant Einstein metrics on generalized flag manifolds with two isotropy summands. Journal of the Australian Mathematical Society, 90, 2, 2011, 237-251, Cambridge University Press, | DOI | MR
[4] Arvanitoyeorgos, A., Mori, K., Sakane, Y.: Einstein metrics on compact Lie groups which are not naturally reductive. Geometriae Dedicata, 160, 1, 2012, 261-285, Springer, | DOI | MR
[5] Arvanitoyeorgos, A., Sakane, Y., Statha, M.: New homogeneous Einstein metrics on quaternionic Stiefel manifolds. Advances in Geometry, 18, 4, 2018, 509-524, De Gruyter, | MR
[6] Benito, P., Draper, C., Elduque, A.: Lie-Yamaguti algebras related to $\mathfrak {g}_2$. Journal of Pure and Applied Algebra, 202, 1-3, 2005, 22-54, Elsevier, | DOI | MR
[7] Benito, P., Elduque, A., Martín-Herce, F.: Nonassociative systems and irreducible homogeneous spaces. Recent Advances in Geometry and Topology, 2004, 65-76, Cluj Univ. Press, Cluj-Napoca, | MR
[8] Bertram, W.: The geometry of Jordan and Lie structures. 1754, 2000, Springer-Verlag, Berlin, Lecture Notes in Mathematics 1754. | MR
[9] Besse, A.L.: Einstein manifolds. 2008, Classics in Mathematics. Springer-Verlag, Berlin, Reprint of the 1987 edition. | MR
[10] Böhm, C., Kerr, M.M.: Low-dimensional homogeneous Einstein manifolds. Transactions of the American Mathematical Society, 4, 2006, 1455-1468, JSTOR, | MR
[11] Boyer, C., Galicki, K.: Sasakian geometry. 2008, Oxford Univ. Press, | MR
[12] Dancer, A.S., Jørgensen, H.R., Swann, A.F.: Metric geometries over the split quaternions. Rendiconti del Seminario Matematico, Universit¸ e Politecnico di Torino, 63, 2, 2005, 119-139, | MR
[13] C. Draper: Holonomy and 3-Sasakian homogeneous manifolds versus symplectic triple systems. Transformation Groups, 2019, arXiv:1903.07815.
[14] C. Draper, A. Elduque: Classification of simple real symplectic triple systems. preprint.
[15] C. Draper, M. Ortega, F.J. Palomo: Affine Connections on 3-Sasakian Homogeneous Manifolds. Mathematische Zeitschrift, 294, 2020, 817-868, | DOI | MR
[16] Elduque, A.: New simple Lie superalgebras in characteristic 3. Journal of Algebra, 296, 1, 2006, 196-233, Elsevier, | DOI | MR
[17] Elduque, A.: The Magic Square and Symmetric Compositions II. Revista Matemática Iberoamericana, 23, 1, 2007, 57-84, Departamento de Matemáticas, Universidad Aut{ó}noma de Madrid, | MR
[18] Heber, J.: Noncompact homogeneous Einstein spaces. Inventiones mathematicae, 133, 2, 1998, 279-352, Springer, | DOI | MR
[19] Kashiwada, T.: A note on a Riemannian space with Sasakian 3-structure. Natural Science Report, Ochanomizu University, 22, 1, 1971, 1-2, | MR
[20] Kerner, R.: Ternary and non-associative structures. International Journal of Geometric Methods in Modern Physics, 5, 8, 2008, 1265-1294, World Scientific, | MR
[21] Meyberg, K.E.: Eine Theorie der Freudenthalschen Tripelsysteme I, II (German). Koninklijke Nederlandse Akademie van Wetenschappen Proceedings. Series A = Indagationes Mathematicae, 30, 1968, 162-190, | DOI | MR
[22] Tamaru, H.: Parabolic subgroups of semisimple Lie groups and Einstein solvmanifolds. Mathematische Annalen, 351, 1, 2011, 51-66, Springer, | DOI | MR
[23] Tamaru, H.: Noncompact homogeneous Einstein manifolds attached to graded Lie algebras. Mathematische Zeitschrift, 259, 1, 2008, 171-186, Springer, | DOI | MR
[24] M.Y. Wang, W. Ziller: On normal homogeneous Einstein manifolds. Annales Scientifiques de l'Ecole Normale Sup{é}rieure, 18, 4, 1985, 563-633, | DOI | MR | Zbl
[25] M.Y. Wang, W. Ziller: Existence and non-existence of homogeneous Einstein metrics. Inventiones Mathematicae, 84, 1, 1986, 177-194, Springer-Verlag, | DOI | MR
[26] Wolf, J.A.: The geometry and structure of isotropy irreducible homogeneous spaces. Acta Mathematica, 120, 1968, 59-148, Institut Mittag-Leffler, | MR
[27] Yamaguti, K., Asano, H.: On the Freudenthal's construction of exceptional Lie algebras. Proceedings of the Japan Academy, 51, 4, 1975, 253-258, The Japan Academy, | DOI | MR