Homogeneous Einstein manifolds based on symplectic triple systems
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 139-154 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For each simple symplectic triple system over the real numbers, the standard enveloping Lie algebra and the algebra of inner derivations of the triple provide a reductive pair related to a semi-Riemannian homogeneous manifold. It is proved that this is an Einstein manifold.
For each simple symplectic triple system over the real numbers, the standard enveloping Lie algebra and the algebra of inner derivations of the triple provide a reductive pair related to a semi-Riemannian homogeneous manifold. It is proved that this is an Einstein manifold.
Classification : 17A40, 17B60, 53C30, 53C50
Keywords: Einstein metric; symplectic triple system; homogeneous manifold; curvature; 3\discretionary-Sasakian manifold; Freudenthal triple system
@article{COMIM_2020_28_2_a3,
     author = {Fontanals, Cristina Draper},
     title = {Homogeneous {Einstein} manifolds based on symplectic triple systems},
     journal = {Communications in Mathematics},
     pages = {139--154},
     year = {2020},
     volume = {28},
     number = {2},
     mrnumber = {4162926},
     zbl = {07300186},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a3/}
}
TY  - JOUR
AU  - Fontanals, Cristina Draper
TI  - Homogeneous Einstein manifolds based on symplectic triple systems
JO  - Communications in Mathematics
PY  - 2020
SP  - 139
EP  - 154
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a3/
LA  - en
ID  - COMIM_2020_28_2_a3
ER  - 
%0 Journal Article
%A Fontanals, Cristina Draper
%T Homogeneous Einstein manifolds based on symplectic triple systems
%J Communications in Mathematics
%D 2020
%P 139-154
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a3/
%G en
%F COMIM_2020_28_2_a3
Fontanals, Cristina Draper. Homogeneous Einstein manifolds based on symplectic triple systems. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 139-154. http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a3/

[1] Alekseevski, D.V.: Homogeneous Einstein metrics. Differential Geometry and its Applications (Proccedings of the Conference), 1987, 1-21, Univ. J. E. Purkyně, Brno, | MR

[2] Alekseevsky, D.V., Cortés, V.: The twistor spaces of a para-quaternionic K{ä}hler manifold. Osaka Journal of Mathematics, 45, 1, 2008, 215-251, Osaka University and Osaka City University, Departments of Mathematics, | MR

[3] Arvanitoyeorgos, A., Chrysikos, I.: Invariant Einstein metrics on generalized flag manifolds with two isotropy summands. Journal of the Australian Mathematical Society, 90, 2, 2011, 237-251, Cambridge University Press, | DOI | MR

[4] Arvanitoyeorgos, A., Mori, K., Sakane, Y.: Einstein metrics on compact Lie groups which are not naturally reductive. Geometriae Dedicata, 160, 1, 2012, 261-285, Springer, | DOI | MR

[5] Arvanitoyeorgos, A., Sakane, Y., Statha, M.: New homogeneous Einstein metrics on quaternionic Stiefel manifolds. Advances in Geometry, 18, 4, 2018, 509-524, De Gruyter, | MR

[6] Benito, P., Draper, C., Elduque, A.: Lie-Yamaguti algebras related to $\mathfrak {g}_2$. Journal of Pure and Applied Algebra, 202, 1-3, 2005, 22-54, Elsevier, | DOI | MR

[7] Benito, P., Elduque, A., Martín-Herce, F.: Nonassociative systems and irreducible homogeneous spaces. Recent Advances in Geometry and Topology, 2004, 65-76, Cluj Univ. Press, Cluj-Napoca, | MR

[8] Bertram, W.: The geometry of Jordan and Lie structures. 1754, 2000, Springer-Verlag, Berlin, Lecture Notes in Mathematics 1754. | MR

[9] Besse, A.L.: Einstein manifolds. 2008, Classics in Mathematics. Springer-Verlag, Berlin, Reprint of the 1987 edition. | MR

[10] Böhm, C., Kerr, M.M.: Low-dimensional homogeneous Einstein manifolds. Transactions of the American Mathematical Society, 4, 2006, 1455-1468, JSTOR, | MR

[11] Boyer, C., Galicki, K.: Sasakian geometry. 2008, Oxford Univ. Press, | MR

[12] Dancer, A.S., Jørgensen, H.R., Swann, A.F.: Metric geometries over the split quaternions. Rendiconti del Seminario Matematico, Universit¸ e Politecnico di Torino, 63, 2, 2005, 119-139, | MR

[13] C. Draper: Holonomy and 3-Sasakian homogeneous manifolds versus symplectic triple systems. Transformation Groups, 2019, arXiv:1903.07815.

[14] C. Draper, A. Elduque: Classification of simple real symplectic triple systems. preprint.

[15] C. Draper, M. Ortega, F.J. Palomo: Affine Connections on 3-Sasakian Homogeneous Manifolds. Mathematische Zeitschrift, 294, 2020, 817-868, | DOI | MR

[16] Elduque, A.: New simple Lie superalgebras in characteristic 3. Journal of Algebra, 296, 1, 2006, 196-233, Elsevier, | DOI | MR

[17] Elduque, A.: The Magic Square and Symmetric Compositions II. Revista Matemática Iberoamericana, 23, 1, 2007, 57-84, Departamento de Matemáticas, Universidad Aut{ó}noma de Madrid, | MR

[18] Heber, J.: Noncompact homogeneous Einstein spaces. Inventiones mathematicae, 133, 2, 1998, 279-352, Springer, | DOI | MR

[19] Kashiwada, T.: A note on a Riemannian space with Sasakian 3-structure. Natural Science Report, Ochanomizu University, 22, 1, 1971, 1-2, | MR

[20] Kerner, R.: Ternary and non-associative structures. International Journal of Geometric Methods in Modern Physics, 5, 8, 2008, 1265-1294, World Scientific, | MR

[21] Meyberg, K.E.: Eine Theorie der Freudenthalschen Tripelsysteme I, II (German). Koninklijke Nederlandse Akademie van Wetenschappen Proceedings. Series A = Indagationes Mathematicae, 30, 1968, 162-190, | DOI | MR

[22] Tamaru, H.: Parabolic subgroups of semisimple Lie groups and Einstein solvmanifolds. Mathematische Annalen, 351, 1, 2011, 51-66, Springer, | DOI | MR

[23] Tamaru, H.: Noncompact homogeneous Einstein manifolds attached to graded Lie algebras. Mathematische Zeitschrift, 259, 1, 2008, 171-186, Springer, | DOI | MR

[24] M.Y. Wang, W. Ziller: On normal homogeneous Einstein manifolds. Annales Scientifiques de l'Ecole Normale Sup{é}rieure, 18, 4, 1985, 563-633, | DOI | MR | Zbl

[25] M.Y. Wang, W. Ziller: Existence and non-existence of homogeneous Einstein metrics. Inventiones Mathematicae, 84, 1, 1986, 177-194, Springer-Verlag, | DOI | MR

[26] Wolf, J.A.: The geometry and structure of isotropy irreducible homogeneous spaces. Acta Mathematica, 120, 1968, 59-148, Institut Mittag-Leffler, | MR

[27] Yamaguti, K., Asano, H.: On the Freudenthal's construction of exceptional Lie algebras. Proceedings of the Japan Academy, 51, 4, 1975, 253-258, The Japan Academy, | DOI | MR