Keywords: Leibniz cohomology; Chevalley-Eilenberg cohomology; spectral sequence; commutative Lie algebra; commutative cohomology
@article{COMIM_2020_28_2_a2,
author = {Wagemann, Friedrich},
title = {Spectral sequences for commutative {Lie} algebras},
journal = {Communications in Mathematics},
pages = {123--137},
year = {2020},
volume = {28},
number = {2},
mrnumber = {4162925},
zbl = {07300185},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a2/}
}
Wagemann, Friedrich. Spectral sequences for commutative Lie algebras. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 123-137. http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a2/
[1] Bouarroudj, S., Grozman, P., Leites, D.: Classification of finite dimensional modular lie superalgebras with indecomposable Cartan matrix. SIGMA. Symmetry, Integrability and Geometry Mathods Applications, 5, 2009, 1-63, | MR
[2] Feldvoss, J., Wagemann, F.: On Leibniz cohomology. arXiv:1902.06128, 2019, 1-30, | MR
[3] Hochschild, G., Serre, J.-P.: Cohomology of Lie algebras. Annals of Mathematics, 1953, 591-603, JSTOR, | DOI | MR | Zbl
[4] Loday, J.-L.: Une version non commutative des algèbres de Leibniz. L'Enseignement Mathématique, 39, 2, 1993, 269-293, | MR
[5] Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag, | DOI | MR
[6] Lopatkin, V., Zusmanovich, P.: Commutative Lie algebras and commutative cohomology in characteristic $2$. Communications in Contemporary Mathematics, 2020, 1-14, DOI:10.1142/S0219199720500467. | DOI
[7] Pirashvili, T.: On Leibniz homology. Annales de l'institut Fourier, 44, 2, 1994, 401-411, | DOI | MR
[8] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. I. Structure theory. Second edition. 1, 2017, De Gruyter Expositions in Mathematics, | MR
[9] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. II. Classifying the absolute toral rank two case. Second edition. 42, 2017, De Gruyter Expositions in Mathematics, | MR
[10] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. III. Completion of the classification. 42, 2017, De Gruyter Expositions in Mathematics, | MR
[11] Weisfeiler, B.Yu., Kac, V.G.: Exponentials in Lie algebras of characteristic $p$. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 35, 4, 1971, 762-788, Russian Academy of Sciences, Steklov Mathematical Institute of Russian Academy of Sciences, | MR