Spectral sequences for commutative Lie algebras
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 123-137 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic $2$. In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequences which compare Chevalley-Eilenberg-, commutative- and Leibniz cohomology. These methods are illustrated by a few computations.
We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic $2$. In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequences which compare Chevalley-Eilenberg-, commutative- and Leibniz cohomology. These methods are illustrated by a few computations.
Classification : 17A30, 17A32, 17B50, 17B55, 17B56
Keywords: Leibniz cohomology; Chevalley-Eilenberg cohomology; spectral sequence; commutative Lie algebra; commutative cohomology
@article{COMIM_2020_28_2_a2,
     author = {Wagemann, Friedrich},
     title = {Spectral sequences for commutative {Lie} algebras},
     journal = {Communications in Mathematics},
     pages = {123--137},
     year = {2020},
     volume = {28},
     number = {2},
     mrnumber = {4162925},
     zbl = {07300185},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a2/}
}
TY  - JOUR
AU  - Wagemann, Friedrich
TI  - Spectral sequences for commutative Lie algebras
JO  - Communications in Mathematics
PY  - 2020
SP  - 123
EP  - 137
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a2/
LA  - en
ID  - COMIM_2020_28_2_a2
ER  - 
%0 Journal Article
%A Wagemann, Friedrich
%T Spectral sequences for commutative Lie algebras
%J Communications in Mathematics
%D 2020
%P 123-137
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a2/
%G en
%F COMIM_2020_28_2_a2
Wagemann, Friedrich. Spectral sequences for commutative Lie algebras. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 123-137. http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a2/

[1] Bouarroudj, S., Grozman, P., Leites, D.: Classification of finite dimensional modular lie superalgebras with indecomposable Cartan matrix. SIGMA. Symmetry, Integrability and Geometry Mathods Applications, 5, 2009, 1-63, | MR

[2] Feldvoss, J., Wagemann, F.: On Leibniz cohomology. arXiv:1902.06128, 2019, 1-30, | MR

[3] Hochschild, G., Serre, J.-P.: Cohomology of Lie algebras. Annals of Mathematics, 1953, 591-603, JSTOR, | DOI | MR | Zbl

[4] Loday, J.-L.: Une version non commutative des algèbres de Leibniz. L'Enseignement Mathématique, 39, 2, 1993, 269-293, | MR

[5] Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag, | DOI | MR

[6] Lopatkin, V., Zusmanovich, P.: Commutative Lie algebras and commutative cohomology in characteristic $2$. Communications in Contemporary Mathematics, 2020, 1-14, DOI:10.1142/S0219199720500467. | DOI

[7] Pirashvili, T.: On Leibniz homology. Annales de l'institut Fourier, 44, 2, 1994, 401-411, | DOI | MR

[8] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. I. Structure theory. Second edition. 1, 2017, De Gruyter Expositions in Mathematics, | MR

[9] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. II. Classifying the absolute toral rank two case. Second edition. 42, 2017, De Gruyter Expositions in Mathematics, | MR

[10] Strade, H.: Simple Lie algebras over fields of positive characteristic. Vol. III. Completion of the classification. 42, 2017, De Gruyter Expositions in Mathematics, | MR

[11] Weisfeiler, B.Yu., Kac, V.G.: Exponentials in Lie algebras of characteristic $p$. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 35, 4, 1971, 762-788, Russian Academy of Sciences, Steklov Mathematical Institute of Russian Academy of Sciences, | MR