Leibniz $A$-algebras
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 103-121
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A finite-dimensional Lie algebra is called an $A$-algebra if all of its nilpotent subalgebras are abelian. These arise in the study of constant Yang-Mills potentials and have also been particularly important in relation to the problem of describing residually finite varieties. They have been studied by several authors, including Bakhturin, Dallmer, Drensky, Sheina, Premet, Semenov, Towers and Varea. In this paper we establish generalisations of many of these results to Leibniz algebras.
A finite-dimensional Lie algebra is called an $A$-algebra if all of its nilpotent subalgebras are abelian. These arise in the study of constant Yang-Mills potentials and have also been particularly important in relation to the problem of describing residually finite varieties. They have been studied by several authors, including Bakhturin, Dallmer, Drensky, Sheina, Premet, Semenov, Towers and Varea. In this paper we establish generalisations of many of these results to Leibniz algebras.
Classification : 17A32, 17B05, 17B20, 17B30, 17B50
Keywords: Lie algebras; Leibniz algebras; $A$-algebras; Frattini ideal; solvable; nilpotent; completely solvable; metabelian; monolithic; cyclic Leibniz algebras
@article{COMIM_2020_28_2_a1,
     author = {Towers, David A.},
     title = {Leibniz $A$-algebras},
     journal = {Communications in Mathematics},
     pages = {103--121},
     year = {2020},
     volume = {28},
     number = {2},
     mrnumber = {4162924},
     zbl = {07300184},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a1/}
}
TY  - JOUR
AU  - Towers, David A.
TI  - Leibniz $A$-algebras
JO  - Communications in Mathematics
PY  - 2020
SP  - 103
EP  - 121
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a1/
LA  - en
ID  - COMIM_2020_28_2_a1
ER  - 
%0 Journal Article
%A Towers, David A.
%T Leibniz $A$-algebras
%J Communications in Mathematics
%D 2020
%P 103-121
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a1/
%G en
%F COMIM_2020_28_2_a1
Towers, David A. Leibniz $A$-algebras. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 103-121. http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a1/

[1] Bakhturin, Yu.A., Semenov, K.N.: On the finite approximability of solvable varieties of Lie algebras. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 6, 1986, 59-61, Lomonosov Moscow State University, English transl. in Moscow University Mathematics Bulletin 41 (1986), 49-51. | MR

[2] Barnes, D.W.: Some theorems on Leibniz algebras. Communications in Algebra, 39, 7, 2011, 2463-2472, | DOI | MR | Zbl

[3] Bloh, A.: On a generalization of Lie algebra notion. USSR Doklady, 165, 3, 1965, 471-473, | MR

[4] Dallmer, E.: On Lie algebras all nilpotent subalgebras of which are Abelian. Journal of Mathematical Physics, 40, 8, 1999, 4151-4156, American Institute of Physics, | MR

[5] Drenski, V.S.: Solvable Lie $A$-algebras. Serdica, 9, 1983, 132-135, | MR

[6] Jacobson, N.: Lie Algebras. 1962, Interscience Publishers, New York-London, Interscience Tracts on Pure and Applied Mathematics, no. 10. | MR | Zbl

[7] Loday, J.L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. L'Enseignement Mathématique, 39, 3-4, 1993, 269-293, | MR

[8] Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag, | DOI | MR

[9] Premet, A.A.: Inner ideals in modular Lie algebras. Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk, 5, 1986, 11-15, | MR

[10] Premet, A.A.: Lie algebras without strong degeneration. Mathematics of the USSR - Sbornik, 57, 1, 1987, 151-164, IOP Publishing, | DOI | MR

[11] Premet, A.A., Semenov, K.N.: Varieties of residually finite Lie algebras. Mathematics of the USSR - Sbornik, 65, 1, 1990, 109-118, IOP Publishing, | DOI | MR

[12] Ray, C.B., Bosko-Dunbar, L., Hedges, A., Hird, J.T., Stagg, K., Stitzinger, E.: A Frattini theory for Leibniz algebras. Communications in Algebra, 41, 4, 2013, 1547-1557, Taylor & Francis, | DOI | MR

[13] Ray, C.B., Combs, A., Gin, N., Hedges, A., Hird, J.T., Zack, L.: Nilpotent Lie and Leibniz algebras. Communications in Algebra, 42, 6, 2014, 2404-2410, Taylor & Francis, | DOI | MR

[14] Schafer, R.D.: An introduction to nonassociative algebras (Pure & Applied Mathematics). 1966, Academic Press, New York, | MR

[15] Semenov, K.N.: Conditions for a variety and a quasivariety generated by a finite Lie algebra to coincide (Russian. English, Russian summaries), Abelian Groups and modules. Abelian Groups and modules, Tomsk. Gos. Univ. Tomsk, 10, 1991, 134-138, | MR

[16] Sheina, G.V.: Varieties of metabelian Lie $A$-algebras. I. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 4, 1977, 37-46, English transl. in Moscow University Mathematics Bulletin 32 (1977), 28-35.. | MR

[17] Sheina, G.V.: Varieties of metabelian Lie $A$-algebras. II. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3, 1978, 52-59, English transl. in Moscow University Mathematics Bulletin 33 (1978), 48-54.. | MR

[18] Sheina, G.V.: Metabelian varieties Lie $A$-algebras. Russian. Uspekhi Matematicheskikh Nauk, 33, 1978, 209-210, | MR

[19] Towers, D.A.: A Frattini theory for algebras. Proceedings of the London Mathematical Society, 3, 3, 1973, 440-462, Narnia, | DOI | MR

[20] Towers, D.A.: Solvable Lie $A$-algebras. Journal of Algebra, 340, 1, 2011, 1-12, Elsevier, | DOI | MR

[21] Towers, D.A., Varea, V.R.: Elementary Lie algebras and Lie $A$-algebras. Journal of Algebra, 312, 2, 2007, 891-901, Elsevier, | DOI | MR

[22] Towers, D.A., Varea, V.R.: Further results on elementary Lie algebras and Lie $A$-algebras. Communications in Algebra, 41, 4, 2013, 1432-1441, Taylor & Francis, | DOI | MR

[23] Winter, D.J.: Abstract Lie Algebras. 1972, M.I.T. Press, Cambridge, Mass., | MR