Keywords: Lie algebras; Leibniz algebras; $A$-algebras; Frattini ideal; solvable; nilpotent; completely solvable; metabelian; monolithic; cyclic Leibniz algebras
@article{COMIM_2020_28_2_a1,
author = {Towers, David A.},
title = {Leibniz $A$-algebras},
journal = {Communications in Mathematics},
pages = {103--121},
year = {2020},
volume = {28},
number = {2},
mrnumber = {4162924},
zbl = {07300184},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a1/}
}
Towers, David A. Leibniz $A$-algebras. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 103-121. http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a1/
[1] Bakhturin, Yu.A., Semenov, K.N.: On the finite approximability of solvable varieties of Lie algebras. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 6, 1986, 59-61, Lomonosov Moscow State University, English transl. in Moscow University Mathematics Bulletin 41 (1986), 49-51. | MR
[2] Barnes, D.W.: Some theorems on Leibniz algebras. Communications in Algebra, 39, 7, 2011, 2463-2472, | DOI | MR | Zbl
[3] Bloh, A.: On a generalization of Lie algebra notion. USSR Doklady, 165, 3, 1965, 471-473, | MR
[4] Dallmer, E.: On Lie algebras all nilpotent subalgebras of which are Abelian. Journal of Mathematical Physics, 40, 8, 1999, 4151-4156, American Institute of Physics, | MR
[5] Drenski, V.S.: Solvable Lie $A$-algebras. Serdica, 9, 1983, 132-135, | MR
[6] Jacobson, N.: Lie Algebras. 1962, Interscience Publishers, New York-London, Interscience Tracts on Pure and Applied Mathematics, no. 10. | MR | Zbl
[7] Loday, J.L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. L'Enseignement Mathématique, 39, 3-4, 1993, 269-293, | MR
[8] Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag, | DOI | MR
[9] Premet, A.A.: Inner ideals in modular Lie algebras. Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk, 5, 1986, 11-15, | MR
[10] Premet, A.A.: Lie algebras without strong degeneration. Mathematics of the USSR - Sbornik, 57, 1, 1987, 151-164, IOP Publishing, | DOI | MR
[11] Premet, A.A., Semenov, K.N.: Varieties of residually finite Lie algebras. Mathematics of the USSR - Sbornik, 65, 1, 1990, 109-118, IOP Publishing, | DOI | MR
[12] Ray, C.B., Bosko-Dunbar, L., Hedges, A., Hird, J.T., Stagg, K., Stitzinger, E.: A Frattini theory for Leibniz algebras. Communications in Algebra, 41, 4, 2013, 1547-1557, Taylor & Francis, | DOI | MR
[13] Ray, C.B., Combs, A., Gin, N., Hedges, A., Hird, J.T., Zack, L.: Nilpotent Lie and Leibniz algebras. Communications in Algebra, 42, 6, 2014, 2404-2410, Taylor & Francis, | DOI | MR
[14] Schafer, R.D.: An introduction to nonassociative algebras (Pure & Applied Mathematics). 1966, Academic Press, New York, | MR
[15] Semenov, K.N.: Conditions for a variety and a quasivariety generated by a finite Lie algebra to coincide (Russian. English, Russian summaries), Abelian Groups and modules. Abelian Groups and modules, Tomsk. Gos. Univ. Tomsk, 10, 1991, 134-138, | MR
[16] Sheina, G.V.: Varieties of metabelian Lie $A$-algebras. I. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 4, 1977, 37-46, English transl. in Moscow University Mathematics Bulletin 32 (1977), 28-35.. | MR
[17] Sheina, G.V.: Varieties of metabelian Lie $A$-algebras. II. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3, 1978, 52-59, English transl. in Moscow University Mathematics Bulletin 33 (1978), 48-54.. | MR
[18] Sheina, G.V.: Metabelian varieties Lie $A$-algebras. Russian. Uspekhi Matematicheskikh Nauk, 33, 1978, 209-210, | MR
[19] Towers, D.A.: A Frattini theory for algebras. Proceedings of the London Mathematical Society, 3, 3, 1973, 440-462, Narnia, | DOI | MR
[20] Towers, D.A.: Solvable Lie $A$-algebras. Journal of Algebra, 340, 1, 2011, 1-12, Elsevier, | DOI | MR
[21] Towers, D.A., Varea, V.R.: Elementary Lie algebras and Lie $A$-algebras. Journal of Algebra, 312, 2, 2007, 891-901, Elsevier, | DOI | MR
[22] Towers, D.A., Varea, V.R.: Further results on elementary Lie algebras and Lie $A$-algebras. Communications in Algebra, 41, 4, 2013, 1432-1441, Taylor & Francis, | DOI | MR
[23] Winter, D.J.: Abstract Lie Algebras. 1972, M.I.T. Press, Cambridge, Mass., | MR