Division algebras that generalize Dickson semifields
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 89-102 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We generalize Knuth's construction of Case I semifields quadratic over a weak nucleus, also known as generalized Dickson semifields, by doubling of central simple algebras. We thus obtain division algebras of dimension $2s^2$ by doubling central division algebras of degree $s$. Results on isomorphisms and automorphisms of these algebras are obtained in certain cases.
We generalize Knuth's construction of Case I semifields quadratic over a weak nucleus, also known as generalized Dickson semifields, by doubling of central simple algebras. We thus obtain division algebras of dimension $2s^2$ by doubling central division algebras of degree $s$. Results on isomorphisms and automorphisms of these algebras are obtained in certain cases.
Classification : 17A35, 17A36, 17A60
Keywords: Nonassociative algebras; division algebras; automorphisms
@article{COMIM_2020_28_2_a0,
     author = {Thompson, Daniel},
     title = {Division algebras that generalize {Dickson} semifields},
     journal = {Communications in Mathematics},
     pages = {89--102},
     year = {2020},
     volume = {28},
     number = {2},
     mrnumber = {4162923},
     zbl = {07300183},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a0/}
}
TY  - JOUR
AU  - Thompson, Daniel
TI  - Division algebras that generalize Dickson semifields
JO  - Communications in Mathematics
PY  - 2020
SP  - 89
EP  - 102
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a0/
LA  - en
ID  - COMIM_2020_28_2_a0
ER  - 
%0 Journal Article
%A Thompson, Daniel
%T Division algebras that generalize Dickson semifields
%J Communications in Mathematics
%D 2020
%P 89-102
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a0/
%G en
%F COMIM_2020_28_2_a0
Thompson, Daniel. Division algebras that generalize Dickson semifields. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 89-102. http://geodesic.mathdoc.fr/item/COMIM_2020_28_2_a0/

[1] Brown, C., Pumplün, S.: The automorphisms of Petit's algebras. Communications in Algebra, 46, 2, 2018, 834-849, Taylor & Francis, | DOI | MR

[2] Burmester, M.V.D.: On the commutative non-associative division algebras of even order of LE Dickson. Rendiconti di Matematica e delle sue Applicazioni. Serie V, 21, 1962, 143-166, | MR

[3] Burmester, M.V.D.: On the non-unicity of translation planes over division algebras. Archiv der Mathematik, 15, 1, 1964, 364-370, Springer, | DOI | MR

[4] Cohen, S.D., Ganley, M.J.: Commutative semifields, two dimensional over their middle nuclei. Journal of Algebra, 75, 2, 1982, 373-385, Academic Press, | DOI | MR

[5] Cordero, M., Wene, G.P.: A survey of finite semifields. Discrete Mathematics, 208, 1999, 125-137, Elsevier, | DOI | MR

[6] Dickson, L.E.: On commutative linear algebras in which division is always uniquely possible. Transactions of the American Mathematical Society, 7, 4, 1906, 514-522, JSTOR, | DOI | MR

[7] Ganley, M.J.: Central weak nucleus semifields. European Journal of Combinatorics, 2, 4, 1981, 339-347, Elsevier, | DOI | MR

[8] Hui, A., Tai, Y.K., Wong, P.P.W.: On the autotopism group of the commutative Dickson semifield $K$ and the stabilizer of the Ganley unital embedded in the semifield plane $\Pi (K)$. Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial, 14, 1, 2015, 27-42, Mathematical Sciences Publishers, | MR

[9] Knus, M., Merkurjev, A., Rost, M., Tignol, J.: The book of involutions. 1998, American Mathematical Soc., | MR

[10] Knuth, D.E.: Finite semifields and projective planes. 1963, Dissertation (Ph.D.), California Institute of Technology. | MR

[11] Schafer, R.D.: An introduction to nonassociative algebras. 1995, Dover Publications, | MR

[12] Thompson, D.: A generalisation of Dickson's commutative division algebras. Communications in Algebra, 48, 9, 2020, 3922-3932, | DOI | MR