Keywords: Lucas sequences; Diophantine equations; Pell equations
@article{COMIM_2020_28_1_a4,
author = {Hashim, Hayder R.},
title = {Solutions of the {Diophantine} {Equation} $7X^2+Y^7=Z^2$ from {Recurrence} {Sequences}},
journal = {Communications in Mathematics},
pages = {55--66},
year = {2020},
volume = {28},
number = {1},
mrnumber = {4124290},
zbl = {07368973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_1_a4/}
}
Hashim, Hayder R. Solutions of the Diophantine Equation $7X^2+Y^7=Z^2$ from Recurrence Sequences. Communications in Mathematics, Tome 28 (2020) no. 1, pp. 55-66. http://geodesic.mathdoc.fr/item/COMIM_2020_28_1_a4/
[1] Muriefah, F.S. Abu, Rashed, A. Al: The simultaneous Diophantine equations $y^{2}-5x^{2}=4$ and $z^{2}-442x^{2}=441$. Arabian Journal for Science and Engineering, 31, 2, 2006, 207-211, | MR
[2] Baker, A.: Linear forms in the logarithms of algebraic numbers (IV). Mathematika, 15, 2, 1968, 204-216, London Mathematical Society, | DOI | MR
[3] Baker, A., Davenport, H.: The equations $3x^{2}-2= y^{2}$ and $8x^{2}-7= z^{2}$. Quart. J. Math. Oxford, 20, 1969, 129-137, | MR
[4] Brown, E.: Sets in which $xy+k$ is always a square. Mathematics of Computation, 45, 172, 1985, 613--620, | MR
[5] Cohn, J.H.E.: Lucas and Fibonacci numbers and some Diophantine equations. Glasgow Mathematical Journal, 7, 1, 1965, 24-28, Cambridge University Press, | MR
[6] Copley, G.N.: Recurrence relations for solutions of Pell's equation. The American Mathematical Monthly, 66, 4, 1959, 288-290, JSTOR, | DOI | MR
[7] Darmon, H., Granville, A.: On the equations $z^{m}= f (x, y)$ and $ax^{p}+ by^{q}= cz^{r}$. Bulletin of the London Mathematical Society, 27, 6, 1995, 513-543, Wiley Online Library, | MR
[8] Grinstead, C.M.: On a method of solving a class of Diophantine equations. Mathematics of Computation, 32, 143, 1978, 936-940, | DOI | MR
[9] Kedlaya, K.: Solving constrained Pell equations. Mathematics of Computation, 67, 222, 1998, 833-842, | DOI | MR
[10] Mohanty, S.P., Ramasamy, A.M.S.: The simultaneous diophantine equations $5y^{2}- 20= x^{2}$ and $2y^{2}+ 1= z^{2}$. Journal of Number Theory, 18, 3, 1984, 356-359, Elsevier, | MR
[11] Mordell, L.J.: Diophantine equations. Pure and Applied Mathematics, 30, 1969, Academic Press, | MR
[12] Peker, B., Cenberci, S.: On the equations $y^2-10x^2=9$ and $z^2-17x^2=16$. International Mathematical Forum, 12, 15, 2017, 715-720, | DOI
[13] Siegel, C.L.: Über einige Anwendungen diophantischer Approximationen. On Some Applications of Diophantine Approximations. Publications of the Scuola Normale Superiore, vol. 2, 2014, 81-138, Edizioni della Normale, Pisa, | MR
[14] Szalay, L.: On the resolution of simultaneous Pell equations. Annales Mathematicae et Informaticae, 34, 2007, 77-87, | MR
[15] Thue, A.: Über Ann{ä}herungswerte algebraischer Zahlen. Journal für die Reine und Angewandte Mathematik, 135, 1909, 284-305, | MR