Solutions of the Diophantine Equation $7X^2+Y^7=Z^2$ from Recurrence Sequences
Communications in Mathematics, Tome 28 (2020) no. 1, pp. 55-66 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Consider the system $x^2-ay^2=b$, $P(x,y)= z^2$, where $P$ is a given integer polynomial. Historically, the integer solutions of such systems have been investigated by many authors using the congruence arguments and the quadratic reciprocity. In this paper, we use Kedlaya's procedure and the techniques of using congruence arguments with the quadratic reciprocity to investigate the solutions of the Diophantine equation $7X^2+Y^7=Z^2$ if $(X,Y)=(L_n,F_n)$ (or $(X,Y)=(F_n,L_n)$) where $\{F_n\}$ and $\{L_n\}$ represent the sequences of Fibonacci numbers and Lucas numbers respectively.
Consider the system $x^2-ay^2=b$, $P(x,y)= z^2$, where $P$ is a given integer polynomial. Historically, the integer solutions of such systems have been investigated by many authors using the congruence arguments and the quadratic reciprocity. In this paper, we use Kedlaya's procedure and the techniques of using congruence arguments with the quadratic reciprocity to investigate the solutions of the Diophantine equation $7X^2+Y^7=Z^2$ if $(X,Y)=(L_n,F_n)$ (or $(X,Y)=(F_n,L_n)$) where $\{F_n\}$ and $\{L_n\}$ represent the sequences of Fibonacci numbers and Lucas numbers respectively.
Classification : 11B39, 11D41
Keywords: Lucas sequences; Diophantine equations; Pell equations
@article{COMIM_2020_28_1_a4,
     author = {Hashim, Hayder R.},
     title = {Solutions of the {Diophantine} {Equation} $7X^2+Y^7=Z^2$ from {Recurrence} {Sequences}},
     journal = {Communications in Mathematics},
     pages = {55--66},
     year = {2020},
     volume = {28},
     number = {1},
     mrnumber = {4124290},
     zbl = {07368973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_1_a4/}
}
TY  - JOUR
AU  - Hashim, Hayder R.
TI  - Solutions of the Diophantine Equation $7X^2+Y^7=Z^2$ from Recurrence Sequences
JO  - Communications in Mathematics
PY  - 2020
SP  - 55
EP  - 66
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020_28_1_a4/
LA  - en
ID  - COMIM_2020_28_1_a4
ER  - 
%0 Journal Article
%A Hashim, Hayder R.
%T Solutions of the Diophantine Equation $7X^2+Y^7=Z^2$ from Recurrence Sequences
%J Communications in Mathematics
%D 2020
%P 55-66
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2020_28_1_a4/
%G en
%F COMIM_2020_28_1_a4
Hashim, Hayder R. Solutions of the Diophantine Equation $7X^2+Y^7=Z^2$ from Recurrence Sequences. Communications in Mathematics, Tome 28 (2020) no. 1, pp. 55-66. http://geodesic.mathdoc.fr/item/COMIM_2020_28_1_a4/

[1] Muriefah, F.S. Abu, Rashed, A. Al: The simultaneous Diophantine equations $y^{2}-5x^{2}=4$ and $z^{2}-442x^{2}=441$. Arabian Journal for Science and Engineering, 31, 2, 2006, 207-211, | MR

[2] Baker, A.: Linear forms in the logarithms of algebraic numbers (IV). Mathematika, 15, 2, 1968, 204-216, London Mathematical Society, | DOI | MR

[3] Baker, A., Davenport, H.: The equations $3x^{2}-2= y^{2}$ and $8x^{2}-7= z^{2}$. Quart. J. Math. Oxford, 20, 1969, 129-137, | MR

[4] Brown, E.: Sets in which $xy+k$ is always a square. Mathematics of Computation, 45, 172, 1985, 613--620, | MR

[5] Cohn, J.H.E.: Lucas and Fibonacci numbers and some Diophantine equations. Glasgow Mathematical Journal, 7, 1, 1965, 24-28, Cambridge University Press, | MR

[6] Copley, G.N.: Recurrence relations for solutions of Pell's equation. The American Mathematical Monthly, 66, 4, 1959, 288-290, JSTOR, | DOI | MR

[7] Darmon, H., Granville, A.: On the equations $z^{m}= f (x, y)$ and $ax^{p}+ by^{q}= cz^{r}$. Bulletin of the London Mathematical Society, 27, 6, 1995, 513-543, Wiley Online Library, | MR

[8] Grinstead, C.M.: On a method of solving a class of Diophantine equations. Mathematics of Computation, 32, 143, 1978, 936-940, | DOI | MR

[9] Kedlaya, K.: Solving constrained Pell equations. Mathematics of Computation, 67, 222, 1998, 833-842, | DOI | MR

[10] Mohanty, S.P., Ramasamy, A.M.S.: The simultaneous diophantine equations $5y^{2}- 20= x^{2}$ and $2y^{2}+ 1= z^{2}$. Journal of Number Theory, 18, 3, 1984, 356-359, Elsevier, | MR

[11] Mordell, L.J.: Diophantine equations. Pure and Applied Mathematics, 30, 1969, Academic Press, | MR

[12] Peker, B., Cenberci, S.: On the equations $y^2-10x^2=9$ and $z^2-17x^2=16$. International Mathematical Forum, 12, 15, 2017, 715-720, | DOI

[13] Siegel, C.L.: Über einige Anwendungen diophantischer Approximationen. On Some Applications of Diophantine Approximations. Publications of the Scuola Normale Superiore, vol. 2, 2014, 81-138, Edizioni della Normale, Pisa, | MR

[14] Szalay, L.: On the resolution of simultaneous Pell equations. Annales Mathematicae et Informaticae, 34, 2007, 77-87, | MR

[15] Thue, A.: Über Ann{ä}herungswerte algebraischer Zahlen. Journal für die Reine und Angewandte Mathematik, 135, 1909, 284-305, | MR