Keywords: kappa-slender module; $k$-coordinatewise slender; $k$-tailwise slender; $k$-cslender; $k$-tslender; slender module; $k$-hmodule; the Hom functor; infinite products; filtered products; infinite coproducts; filtered products; non-measurable cardinal; torsion theory
@article{COMIM_2020_28_1_a0,
author = {Dimitric, Radoslav},
title = {Kappa-Slender {Modules}},
journal = {Communications in Mathematics},
pages = {1--12},
year = {2020},
volume = {28},
number = {1},
mrnumber = {4124286},
zbl = {07368969},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_1_a0/}
}
Dimitric, Radoslav. Kappa-Slender Modules. Communications in Mathematics, Tome 28 (2020) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/COMIM_2020_28_1_a0/
[1] Dimitric, R.: Slenderness in Abelian Categories. Abelian Group Theory: Proceedings of the Conference at Honolulu, Hawaii, Lect. Notes Math. 1006, 1006, 1983, 375-383, Berlin: Springer Verlag, | MR
[2] Dimitric, R.: Slenderness. Vol. I. Abelian Categories. 2018, Cambridge Tracts in Mathematics No. 215. Cambridge: Cambridge University Press, ISBN: 9781108474429. | MR
[3] Dimitric, R.: Slenderness. Vol. II. Generalizations. Dualizations. 2021, Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, | MR
[4] Fuchs, L.: Abelian Groups. 1958, Budapest: Publishing House of the Hungarian Academy of Science, Reprinted by New York: Pergamon Press (1960).. | MR | Zbl
[5] Hrbacek, K., Jech, T.: Introduction to Set Theory (3rd edition, revised and expanded). 1999, New York -- Basel: Marcel Dekker, | MR
[6] Łoś, J.: Linear equations and pure subgroups. Bull. Acad. Polon. Sci, 7, 1959, 13-18, | MR
[7] Stenström, B.: Rings of Quotients. An Introduction to Methods of Ring Theory. 1975, Berlin, Heidelberg, New York: Springer-Verlag, | MR