Kappa-Slender Modules
Communications in Mathematics, Tome 28 (2020) no. 1, pp. 1-12
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For an arbitrary infinite cardinal $\kappa $, we define classes of $\kappa $-cslender and $\kappa $-tslender modules as well as related classes of $\kappa $-hmodules and initiate a study of these classes.
For an arbitrary infinite cardinal $\kappa $, we define classes of $\kappa $-cslender and $\kappa $-tslender modules as well as related classes of $\kappa $-hmodules and initiate a study of these classes.
Classification : 03C20, 03E10, 03E20, 03E55, 03E75, 16D80, 16D90, 18A20, 18A30, 18A40, 20K25
Keywords: kappa-slender module; $k$-coordinatewise slender; $k$-tailwise slender; $k$-cslender; $k$-tslender; slender module; $k$-hmodule; the Hom functor; infinite products; filtered products; infinite coproducts; filtered products; non-measurable cardinal; torsion theory
@article{COMIM_2020_28_1_a0,
     author = {Dimitric, Radoslav},
     title = {Kappa-Slender {Modules}},
     journal = {Communications in Mathematics},
     pages = {1--12},
     year = {2020},
     volume = {28},
     number = {1},
     mrnumber = {4124286},
     zbl = {07368969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020_28_1_a0/}
}
TY  - JOUR
AU  - Dimitric, Radoslav
TI  - Kappa-Slender Modules
JO  - Communications in Mathematics
PY  - 2020
SP  - 1
EP  - 12
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020_28_1_a0/
LA  - en
ID  - COMIM_2020_28_1_a0
ER  - 
%0 Journal Article
%A Dimitric, Radoslav
%T Kappa-Slender Modules
%J Communications in Mathematics
%D 2020
%P 1-12
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2020_28_1_a0/
%G en
%F COMIM_2020_28_1_a0
Dimitric, Radoslav. Kappa-Slender Modules. Communications in Mathematics, Tome 28 (2020) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/COMIM_2020_28_1_a0/

[1] Dimitric, R.: Slenderness in Abelian Categories. Abelian Group Theory: Proceedings of the Conference at Honolulu, Hawaii, Lect. Notes Math. 1006, 1006, 1983, 375-383, Berlin: Springer Verlag, | MR

[2] Dimitric, R.: Slenderness. Vol. I. Abelian Categories. 2018, Cambridge Tracts in Mathematics No. 215. Cambridge: Cambridge University Press, ISBN: 9781108474429. | MR

[3] Dimitric, R.: Slenderness. Vol. II. Generalizations. Dualizations. 2021, Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, | MR

[4] Fuchs, L.: Abelian Groups. 1958, Budapest: Publishing House of the Hungarian Academy of Science, Reprinted by New York: Pergamon Press (1960).. | MR | Zbl

[5] Hrbacek, K., Jech, T.: Introduction to Set Theory (3rd edition, revised and expanded). 1999, New York -- Basel: Marcel Dekker, | MR

[6] Łoś, J.: Linear equations and pure subgroups. Bull. Acad. Polon. Sci, 7, 1959, 13-18, | MR

[7] Stenström, B.: Rings of Quotients. An Introduction to Methods of Ring Theory. 1975, Berlin, Heidelberg, New York: Springer-Verlag, | MR