Keywords: differential equation; non-monotone argument; oscillatory solution; nonoscillatory solution; Grönwall inequality.
@article{COMIM_2019_27_2_a5,
author = {Chatzarakis, George E. and Jadlovsk\'a, Irena},
title = {Oscillation in deviating differential equations using an iterative method},
journal = {Communications in Mathematics},
pages = {143--169},
year = {2019},
volume = {27},
number = {2},
mrnumber = {4058171},
zbl = {1464.34088},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2019_27_2_a5/}
}
TY - JOUR AU - Chatzarakis, George E. AU - Jadlovská, Irena TI - Oscillation in deviating differential equations using an iterative method JO - Communications in Mathematics PY - 2019 SP - 143 EP - 169 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/COMIM_2019_27_2_a5/ LA - en ID - COMIM_2019_27_2_a5 ER -
Chatzarakis, George E.; Jadlovská, Irena. Oscillation in deviating differential equations using an iterative method. Communications in Mathematics, Tome 27 (2019) no. 2, pp. 143-169. http://geodesic.mathdoc.fr/item/COMIM_2019_27_2_a5/
[1] Braverman, E., Chatzarakis, G.E., Stavroulakis, I.P.: Iterative oscillation tests for differential equations with several non-monotone arguments. Adv. Difference Equ., 87, 2016, | MR
[2] Braverman, E., Karpuz, B.: On oscillation of differential and difference equations with non-monotone delays. Appl. Math. Comput., 218, 7, 2011, 3880-3887, | MR
[3] Chatzarakis, G.E.: Differential equations with non-monotone arguments: Iterative Oscillation results. J. Math. Comput. Sci., 6, 5, 2016, 953-964,
[4] Chatzarakis, G.E.: On oscillation of differential equations with non-monotone deviating arguments. Mediterr. J. Math., 14, 2, 2017, 82, | DOI | MR
[5] Chatzarakis, G.E., Jadlovská, I.: Improved iterative oscillation tests for firs-order deviating differential equations. Opuscula Math., 38, 3, 2018, 327-356, | DOI | MR
[6] Chatzarakis, G.E., Li, T.: Oscillation criteria for delay and advanced differential equations with non-monotone arguments. Complexity, 2018, 2018, 1-18, Article ID 8237634.. | DOI | MR
[7] Chatzarakis, G.E., Öcalan, Ö.: Oscillations of differential equations with several non-monotone advanced arguments. Dynamical Systems, 30, 3, 2015, 310-323, | DOI | MR
[8] Erbe, L.H., Kong, Qingkai, Zhang, B.G.: Oscillation Theory for Functional Differential Equations. 1995, Monographs and Textbooks in Pure and Applied Mathematics, 190. Marcel Dekker, Inc., New York, | MR
[9] Erbe, L.H., Zhang, B.G.: Oscillation of first order linear differential equations with deviating arguments. Differential Integral Equations, 1, 3, 1988, 305-314, | MR
[10] Fukagai, N., Kusano, T.: Oscillation theory of first order functional-differential equations with deviating arguments. Ann. Mat. Pura Appl., 136, 1, 1984, 95-117, | DOI | MR | Zbl
[11] Jaro¹, J., Stavroulakis, I.P.: Oscillation tests for delay equations. Rocky Mountain J. Math., 29, 1, 1999, 197-207, | DOI | MR
[12] Jian, C.: On the oscillation of linear differential equations with deviating arguments. Math. in Practice and Theory, 1, 1, 1991, 32-40, | MR
[13] Kon, M., Sficas, Y.G., Stavroulakis, I.P.: Oscillation criteria for delay equations. Proc. Amer. Math. Soc., 128, 10, 2000, 2989-2998, | DOI | MR
[14] Koplatadze, R.G., Chanturija, T.A.: Oscillating and monotone solutions of first-order differential equations with deviating argument. Differentsiaµnye Uravneniya, 18, 8, 1982, 1463-1465, (in Russian). | MR
[15] Koplatadze, R.G., Kvinikadze, G.: On the oscillation of solutions of first order delay differential inequalities and equations. Georgian Math. J., 1, 6, 1994, 675-685, | DOI | MR
[16] Kwong, M.K.: Oscillation of first-order delay equations. J. Math. Anal. Appl., 156, 1, 1991, 274-286, | DOI | MR
[17] Ladas, G., Lakshmikantham, V., Papadakis, L.S.: Oscillations of higher-order retarded differential equations generated by the retarded arguments. Delay and functional differential equations and their applications, 1972, 219-231, Academic Press, | MR
[18] Ladde, G.S.: Oscillations caused by retarded perturbations of first order linear ordinary differential equations. Atti Acad. Naz. Lincei Rendiconti, 63, 5, 1977, 351-359, | MR
[19] Ladde, G.S., Lakshmikantham, V., Zhang, B.G.: Oscillation Theory of Differential Equations with Deviating Arguments. 1987, Monographs and Textbooks in Pure and Applied Mathematics, 110, Marcel Dekker, Inc., New York, | MR | Zbl
[20] Li, X., Zhu, D.: Oscillation and nonoscillation of advanced differential equations with variable coefficients. J. Math. Anal. Appl., 269, 2, 2002, 462-488, | DOI | MR
[21] El-Morshedy, H.A., Attia, E.R.: New oscillation criterion for delay differential equations with non-monotone arguments. Appl. Math. Lett., 54, 2016, 54-59, | DOI | MR
[22] My¹kis, A.D.: Linear homogeneous differential equations of first order with deviating arguments. Uspekhi Mat. Nauk, 5, 36, 1950, 160-162, (in Russian). | MR
[23] Yu, J.S., Wang, Z.C., Zhang, B.G., Qian, X.Z.: Oscillations of differential equations with deviating arguments. Panamer. Math. J., 2, 2, 1992, 59-78, | MR
[24] Zhang, B.G.: Oscillation of solutions of the first-order advanced type differential equations. Science Exploration, 2, 1982, 79-82, | MR
[25] Zhou, D.: On some problems on oscillation of functional differential equations of first order. J. Shandong University, 25, 1990, 434-442,