Keywords: Fractional differential equations; Boundary value problems; Erdélyi-Kober derivative; Fixed point theorems; Existence; Uniqueness.
@article{COMIM_2019_27_2_a4,
author = {Arioua, Yacine and Titraoui, Maria},
title = {New class of boundary value problem for nonlinear fractional differential equations involving {Erd\'elyi-Kober} derivative},
journal = {Communications in Mathematics},
pages = {113--141},
year = {2019},
volume = {27},
number = {2},
mrnumber = {4058170},
zbl = {1464.34016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2019_27_2_a4/}
}
TY - JOUR AU - Arioua, Yacine AU - Titraoui, Maria TI - New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative JO - Communications in Mathematics PY - 2019 SP - 113 EP - 141 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/COMIM_2019_27_2_a4/ LA - en ID - COMIM_2019_27_2_a4 ER -
%0 Journal Article %A Arioua, Yacine %A Titraoui, Maria %T New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative %J Communications in Mathematics %D 2019 %P 113-141 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/COMIM_2019_27_2_a4/ %G en %F COMIM_2019_27_2_a4
Arioua, Yacine; Titraoui, Maria. New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative. Communications in Mathematics, Tome 27 (2019) no. 2, pp. 113-141. http://geodesic.mathdoc.fr/item/COMIM_2019_27_2_a4/
[1] Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-type fractional differential equations, inclusions and inequalities. 2017, Springer International Publishing, | MR
[2] Ahmad, B., Ntouyas, S.K., Tariboonc, J., Alsaedi, A.: A Study of Nonlinear Fractional-Order Boundary Value Problem with Nonlocal Erdélyi-Kober and Generalized Riemann-Liouville Type Integral Boundary Conditions. Math. Model. Anal., 22, 2, 2017, 121-139, | DOI | MR
[3] Ahmad, B., Ntouyas, S.K., Tariboonc, J., Alsaedi, A.: Caputo Type Fractional Differential Equations with Nonlocal Riemann-Liouville and Erdélyi-Kober Type Integral Boundary Conditions. Filomat, 31, 14, 2017, 4515-4529, | DOI | MR
[4] Agarwal, R.P., O'Regan, D.: Infinite Interval Problems for Differential, Difference and Integral Equations. 2001, Kluwer Academic, Dordrecht, | MR | Zbl
[5] Bartle, R.G.: A modern theory of integration. 32, 2001, Amer. Math. Soc., Providence, Rhode Island, | MR
[6] Corduneanu, C.: Integral Equations and Stability of Feedback Systems. 1973, Academic Press, New York, | MR | Zbl
[7] Das, S.: Functional Fractional Calculus for System Identification and Controls. 2008, Springer-Verlag Berlin Heidelberg, | MR
[8] Diethelm, K.: The Analysis of Fractional Differential Equations. 2010, Springer, Berlin, | MR | Zbl
[9] Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. 2006, Elsevier Science B.V, Amsterdam, | MR | Zbl
[10] Kiryakova, V.: A brief story about the operators of the generalized fractional calculus. Frac. Calc. Appl. Anal., 11, 2, 2008, 203-220, | MR
[11] Kiryakova, V.: Generalized Fractional Calculus and Applications. 1994, Longman and John Wiley, New York, | MR
[12] Kiryakova, V., Luchko, Y.: Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators. Cent. Eur. J. Phys., 11, 10, 2013, 1314-1336,
[13] Liu, X., Jia, M.: Multiple solutions of nonlocal boundary value problems for fractional differential equations on half-line. Electron. J. Qual. Theory Differ. Equ., 56, 1-14. | MR
[14] Luchko, Y.: Operational rules for a mixed operator of the Erdélyi-Kober type. Fract. Calc. Appl. Anal., 7, 3, 2007, 339-364, | MR
[15] Luchko, Y., Trujillo, J.: Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal., 10, 3, 2007, 249-267, | MR
[16] Maagli, H., Dhifli, A.: Positive solutions to a nonlinear fractional Dirichlet problem on the half-space. Electron. J. Differ. Equ., 50, 2014, 1-7, | MR
[17] Mathai, A.M., Haubold, H.J.: Erdélyi-Kober Fractional Calculus. 2018, Springer Nature, Singapore Pte Ltd, | MR
[18] Ntouyas, S.K.: Boundary value problems for nonlinear fractional differential equations and inclusions with nonlocal and fractional integral boundary conditions. Opuscula Math., 33, 1, 2013, 117-138, | DOI | MR
[19] Pagnini, G.: Erdélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal., 15, 1, 2012, 117-127, | DOI | MR
[20] Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering. 1999, Academic Press, New York, | MR
[21] Sabatier, J., Agrawal, O.P., Machado, J.A. Tenreiro: Advances in Fractional Calculus Theoretical Developments and Applicationsin Physics and Engineering. 2007, Springer, | MR
[22] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integral and Derivatives Theory and Applications. 1993, Gordon and Breach, Switzerland, | MR
[23] A1-Saqabi, B., Kiryakova, V.S.: Explicit solutions of fractional integral and differential equations involving Erdé1yi-Kober operators. Appl. Math. Comput., 95, 1998, 1-13, | MR
[24] Sneddon, I.N.: Mixed Boundary Value Problems in Potential Theory. 1966, North-Holland Publ., Amsterdam, | MR
[25] Sneddon, I.N.: The use in mathematical analysis of the Erdélyi-Kober operators and some of their applications. Lect Notes Math, 457, 1975, 37-79, Springer-Verlag, New York, | DOI | MR
[26] Sneddon, I.N.: The Use of Operators of Fractional Integration in Applied Mathematics. 1979, RWN Polish Sci. Publ., Warszawa-Poznan, | MR
[27] Sun, Q., Meng, S., Cu, Y.: Existence results for fractional order differential equation with nonlocal Erdélyi-Kober and generalized Riemann-Liouville type integral boundary conditions at resonance. Adv. Difference Equ., 2018, 243, | MR
[28] Yan, B., Liu, Y.: Unbounded solutions of the singular boundary value problems for second order differential equations on the half-line. Appl. Math. Comput., 147, 3, 2004, 629-644, | MR | Zbl
[29] Yan, B., O'Regan, D., Agarwal, and R.P.: Unbounded solutions for singular boundary value problems on the semi-infinite interval Upper and lower solutions and multiplicity. Int. J. Comput. Appl. Math., 197, 2, 2006, 365-386, | MR
[30] Zhao, Z.: Positive solutions of nonlinear second order ordinary differential equations. Proc. Amer. Math. Soc., 121, 2, 1994, 465-469, | DOI | MR
[31] Zhao, X., Ge, W.: Existence of at least three positive solutions for multi-point boundary value problem on infinite intervals with p-Laplacian operator. J. Appl. Math. Comput., 28, 1, 2008, 391-403, | DOI | MR
[32] Zhao, X., Ge, W.: Unbounded solutions for a fractional boundary value problems on the infinite interval. Acta Appl. Math., 109, 2010, 495-505, | DOI | MR