Keywords: Generalized $d$-derivation; fixed point; ideal; partially ordered set.
@article{COMIM_2019_27_1_a5,
author = {Abdelwanis, Ahmed Y. and Boua, Abdelkarim},
title = {On generalized derivations of partially ordered sets},
journal = {Communications in Mathematics},
pages = {69--78},
year = {2019},
volume = {27},
number = {1},
mrnumber = {3977478},
zbl = {1469.06002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a5/}
}
Abdelwanis, Ahmed Y.; Boua, Abdelkarim. On generalized derivations of partially ordered sets. Communications in Mathematics, Tome 27 (2019) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a5/
[1] Alshehri, N. O.: Generalized derivations of lattices. Int. J. Contemp. Math. Sciences, 5, 13, 2010, 629-640, | MR
[2] Ceven, Y., Ozturk, M. A.: On $f$-derivations of lattices. Bull. Korean Math. Soc., 45, 4, 2008, 701-707, | DOI | MR
[3] Chajda, I., Rachůnek, J.: Forbidden configurations for distributive and modular ordered sets. Order, 5, 1989, 407-423, | DOI | MR
[4] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. 2003, Cambridge University Press, | MR | Zbl
[5] Gölbasi, Ö.: Notes on prime near-rings with generalized derivation. Southeast Asian Bull. Math., 30, 2006, 49-54, | MR
[6] Hvala, B.: Generalized derivations in rings. Comm. Alg., 26, 1998, 1147-1166, | DOI | MR | Zbl
[7] Larmerová, J., Rachůnek, J.: Translations of distributive and modular ordered sets. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 27, 1988, 13-23, | MR
[8] Ozturk, M. A., Yazarli, H., Kim, K. H.: Permuting tri-derivations in lattices. Quaest. Math., 32, 3, 2009, 415-425, | DOI | MR
[9] Rachůnek, J.: Translations des ensembles ordonnés. Math. Slovaca., 31, 1981, 337-340, | MR
[10] Szasz, G.: Derivations of lattices. Acta Sci. Math. (Szeged), 37, 1975, 149-154, | MR
[11] Ullah, Z., Javaid, I., Chaudhary, M.A.: On generalized tripel derivations on lattices. Ars Combinatoria, 113, 2014, 463-471, | MR
[12] Xin, X.L., Li, T.Y., Lu, J.H.: On derivations of lattices. Inform. Sci., 178, 2008, 307-316, | DOI | MR
[13] Zhang, H., Li, Q.: On derivations of partially ordered sets. Math. Slovaca, 67, 1, 2017, 17-22, | DOI | MR