On compatible linear connections of two-dimensional generalized Berwald manifolds: a classical approach
Communications in Mathematics, Tome 27 (2019) no. 1, pp. 51-68
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper we characterize the two-dimensional generalized Berwald manifolds in terms of the classical setting of Finsler surfaces (Berwald frame, main scalar etc.). As an application we prove that if a Landsberg surface is a generalized Berwald manifold then it must be a Berwald manifold. Especially, we reproduce Wagner's original result in honor of the 75th anniversary of publishing his pioneering work about generalized Berwald manifolds.
In the paper we characterize the two-dimensional generalized Berwald manifolds in terms of the classical setting of Finsler surfaces (Berwald frame, main scalar etc.). As an application we prove that if a Landsberg surface is a generalized Berwald manifold then it must be a Berwald manifold. Especially, we reproduce Wagner's original result in honor of the 75th anniversary of publishing his pioneering work about generalized Berwald manifolds.
Classification : 53C60, 58B20
Keywords: Finsler spaces; Generalized Berwalds spaces; Intrinsic Geometry
@article{COMIM_2019_27_1_a4,
     author = {Vincze, Csaba and Khoshdani, Tahere Reza and Gilani, Sareh Mehdi Zadeh and Ol\'ah, M\'ark},
     title = {On compatible linear connections of two-dimensional generalized {Berwald} manifolds: a classical approach},
     journal = {Communications in Mathematics},
     pages = {51--68},
     year = {2019},
     volume = {27},
     number = {1},
     mrnumber = {3977477},
     zbl = {1469.53117},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a4/}
}
TY  - JOUR
AU  - Vincze, Csaba
AU  - Khoshdani, Tahere Reza
AU  - Gilani, Sareh Mehdi Zadeh
AU  - Oláh, Márk
TI  - On compatible linear connections of two-dimensional generalized Berwald manifolds: a classical approach
JO  - Communications in Mathematics
PY  - 2019
SP  - 51
EP  - 68
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a4/
LA  - en
ID  - COMIM_2019_27_1_a4
ER  - 
%0 Journal Article
%A Vincze, Csaba
%A Khoshdani, Tahere Reza
%A Gilani, Sareh Mehdi Zadeh
%A Oláh, Márk
%T On compatible linear connections of two-dimensional generalized Berwald manifolds: a classical approach
%J Communications in Mathematics
%D 2019
%P 51-68
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a4/
%G en
%F COMIM_2019_27_1_a4
Vincze, Csaba; Khoshdani, Tahere Reza; Gilani, Sareh Mehdi Zadeh; Oláh, Márk. On compatible linear connections of two-dimensional generalized Berwald manifolds: a classical approach. Communications in Mathematics, Tome 27 (2019) no. 1, pp. 51-68. http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a4/

[1] Bao, D.: On two curvature-driven problems in Riemann-Finsler geometry. Advanced Studies in Pure Mathematics, 48, 2007, 19-71, | DOI | MR

[2] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler geometry. 2000, Springer-Verlag, | MR

[3] Berwald, L.: Über zweidimensionale allgemeine metrische Räume. Journal für die reine und angewandte Mathematik, 156, 1927, 191-222, | MR

[4] Berwald, L.: On Finsler and Cartan geometries. III: two-dimensional Finsler spaces with rectilinear extremals. Annals of Mathematics, 1941, 84-112, | DOI | MR

[5] Hashiguchi, M.: On conformal transformations of Finsler metrics. J. Math. Kyoto Univ., 16, 1976, 25-50, | DOI | MR

[6] Matsumoto, M.: Foundations of Finsler geometry and special Finsler spaces. 1986, Kaiseisha press, | MR

[7] Shen, Z.: Differential Geometry of Spray and Finsler Spaces. 2001, Kluwer Academic Publishers, | MR | Zbl

[8] Vattamány, Sz., Vincze, Cs.: Two-dimensional Landsberg manifolds with vanishing Douglas tensor. Annales Univ. Sci. Budapest, 44, 2001, 11-26, | MR

[9] Vattamány, Sz., Vincze, Cs.: On a new geometrical derivation of two-dimensional Finsler manifolds with constant main scalar. Period. Math. Hungar., 48, 1--2, 2004, 61-67, | DOI | MR

[10] Vincze, Cs.: A new proof of Szabó's theorem on the Riemann-metrizability of Berwald manifolds. Acta Math. Acad. Paedagog. Nyházi (NS), 21, 2, 2005, 199-204, | MR

[11] Vincze, Cs.: On a scale function for testing the conformality of Finsler manifolds to a Berwald manifold. Journal of Geometry and Physics, 54, 4, 2005, 454-475, Elsevier, | DOI | MR

[12] Vincze, Cs.: On Berwald and Wagner manifolds. Acta Math. Acad. Paedagog. Nyházi.(NS), 24, 2008, 169-178, | MR

[13] Vincze, Cs.: On generalized Berwald manifolds with semi-symmetric compatible linear connections. Publ. Math. Debrecen, 83, 4, 2013, 741-755, | DOI | MR

[14] Vincze, Cs.: On a special type of generalized Berwald manifolds: semi-symmetric linear connections preserving the Finslerian length of tangent vectors. European Journal of Mathematics, 3, 4, 2017, 1098-1171, Springer, | DOI | MR

[15] Vincze, Cs.: Lazy orbits: an optimization problem on the sphere. Journal of Geometry and Physics, 124, 2018, 180-198, Elsevier, | DOI | MR

[16] Vincze, Cs., Oláh, M., Alabdulsada, Layth M.: On the divergence representation of the Gauss curvature of Riemannian surfaces and its applications. Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 1-13, Springer,

[17] Wagner, V.: On generalized Berwald spaces. CR (Doklady) Acad. Sci. URSS (NS), 39, 1943, 3-5, | MR