Keywords: Finsler spaces; Generalized Berwalds spaces; Intrinsic Geometry
@article{COMIM_2019_27_1_a4,
author = {Vincze, Csaba and Khoshdani, Tahere Reza and Gilani, Sareh Mehdi Zadeh and Ol\'ah, M\'ark},
title = {On compatible linear connections of two-dimensional generalized {Berwald} manifolds: a classical approach},
journal = {Communications in Mathematics},
pages = {51--68},
year = {2019},
volume = {27},
number = {1},
mrnumber = {3977477},
zbl = {1469.53117},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a4/}
}
TY - JOUR AU - Vincze, Csaba AU - Khoshdani, Tahere Reza AU - Gilani, Sareh Mehdi Zadeh AU - Oláh, Márk TI - On compatible linear connections of two-dimensional generalized Berwald manifolds: a classical approach JO - Communications in Mathematics PY - 2019 SP - 51 EP - 68 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a4/ LA - en ID - COMIM_2019_27_1_a4 ER -
%0 Journal Article %A Vincze, Csaba %A Khoshdani, Tahere Reza %A Gilani, Sareh Mehdi Zadeh %A Oláh, Márk %T On compatible linear connections of two-dimensional generalized Berwald manifolds: a classical approach %J Communications in Mathematics %D 2019 %P 51-68 %V 27 %N 1 %U http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a4/ %G en %F COMIM_2019_27_1_a4
Vincze, Csaba; Khoshdani, Tahere Reza; Gilani, Sareh Mehdi Zadeh; Oláh, Márk. On compatible linear connections of two-dimensional generalized Berwald manifolds: a classical approach. Communications in Mathematics, Tome 27 (2019) no. 1, pp. 51-68. http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a4/
[1] Bao, D.: On two curvature-driven problems in Riemann-Finsler geometry. Advanced Studies in Pure Mathematics, 48, 2007, 19-71, | DOI | MR
[2] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler geometry. 2000, Springer-Verlag, | MR
[3] Berwald, L.: Über zweidimensionale allgemeine metrische Räume. Journal für die reine und angewandte Mathematik, 156, 1927, 191-222, | MR
[4] Berwald, L.: On Finsler and Cartan geometries. III: two-dimensional Finsler spaces with rectilinear extremals. Annals of Mathematics, 1941, 84-112, | DOI | MR
[5] Hashiguchi, M.: On conformal transformations of Finsler metrics. J. Math. Kyoto Univ., 16, 1976, 25-50, | DOI | MR
[6] Matsumoto, M.: Foundations of Finsler geometry and special Finsler spaces. 1986, Kaiseisha press, | MR
[7] Shen, Z.: Differential Geometry of Spray and Finsler Spaces. 2001, Kluwer Academic Publishers, | MR | Zbl
[8] Vattamány, Sz., Vincze, Cs.: Two-dimensional Landsberg manifolds with vanishing Douglas tensor. Annales Univ. Sci. Budapest, 44, 2001, 11-26, | MR
[9] Vattamány, Sz., Vincze, Cs.: On a new geometrical derivation of two-dimensional Finsler manifolds with constant main scalar. Period. Math. Hungar., 48, 1--2, 2004, 61-67, | DOI | MR
[10] Vincze, Cs.: A new proof of Szabó's theorem on the Riemann-metrizability of Berwald manifolds. Acta Math. Acad. Paedagog. Nyházi (NS), 21, 2, 2005, 199-204, | MR
[11] Vincze, Cs.: On a scale function for testing the conformality of Finsler manifolds to a Berwald manifold. Journal of Geometry and Physics, 54, 4, 2005, 454-475, Elsevier, | DOI | MR
[12] Vincze, Cs.: On Berwald and Wagner manifolds. Acta Math. Acad. Paedagog. Nyházi.(NS), 24, 2008, 169-178, | MR
[13] Vincze, Cs.: On generalized Berwald manifolds with semi-symmetric compatible linear connections. Publ. Math. Debrecen, 83, 4, 2013, 741-755, | DOI | MR
[14] Vincze, Cs.: On a special type of generalized Berwald manifolds: semi-symmetric linear connections preserving the Finslerian length of tangent vectors. European Journal of Mathematics, 3, 4, 2017, 1098-1171, Springer, | DOI | MR
[15] Vincze, Cs.: Lazy orbits: an optimization problem on the sphere. Journal of Geometry and Physics, 124, 2018, 180-198, Elsevier, | DOI | MR
[16] Vincze, Cs., Oláh, M., Alabdulsada, Layth M.: On the divergence representation of the Gauss curvature of Riemannian surfaces and its applications. Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 1-13, Springer,
[17] Wagner, V.: On generalized Berwald spaces. CR (Doklady) Acad. Sci. URSS (NS), 39, 1943, 3-5, | MR