Hilbert series of the Grassmannian and $k$-Narayana numbers
Communications in Mathematics, Tome 27 (2019) no. 1, pp. 27-41 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We compute the Hilbert series of the complex Grassmannian using invariant theoretic methods. This is made possible by showing that the denominator of the $q$-Hilbert series is a Vandermonde-like determinant. We show that the $h$-polynomial of the Grassmannian coincides with the $k$-Narayana polynomial. A simplified formula for the $h$-polynomial of Schubert varieties is given. Finally, we use a generalized hypergeometric Euler transform to find simplified formulae for the $k$-Narayana numbers, i.e.~the $h$-polynomial of the Grassmannian.
We compute the Hilbert series of the complex Grassmannian using invariant theoretic methods. This is made possible by showing that the denominator of the $q$-Hilbert series is a Vandermonde-like determinant. We show that the $h$-polynomial of the Grassmannian coincides with the $k$-Narayana polynomial. A simplified formula for the $h$-polynomial of Schubert varieties is given. Finally, we use a generalized hypergeometric Euler transform to find simplified formulae for the $k$-Narayana numbers, i.e.~the $h$-polynomial of the Grassmannian.
Classification : 13D40, 14M15, 33C90
Keywords: Hilbert series of the Grassmannian; Narayana numbers; Euler's hypergeometric transform
@article{COMIM_2019_27_1_a2,
     author = {Braun, Lukas},
     title = {Hilbert series of the {Grassmannian} and $k${-Narayana} numbers},
     journal = {Communications in Mathematics},
     pages = {27--41},
     year = {2019},
     volume = {27},
     number = {1},
     mrnumber = {3977475},
     zbl = {1467.13024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a2/}
}
TY  - JOUR
AU  - Braun, Lukas
TI  - Hilbert series of the Grassmannian and $k$-Narayana numbers
JO  - Communications in Mathematics
PY  - 2019
SP  - 27
EP  - 41
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a2/
LA  - en
ID  - COMIM_2019_27_1_a2
ER  - 
%0 Journal Article
%A Braun, Lukas
%T Hilbert series of the Grassmannian and $k$-Narayana numbers
%J Communications in Mathematics
%D 2019
%P 27-41
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a2/
%G en
%F COMIM_2019_27_1_a2
Braun, Lukas. Hilbert series of the Grassmannian and $k$-Narayana numbers. Communications in Mathematics, Tome 27 (2019) no. 1, pp. 27-41. http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a2/

[1] Berman, J., Köhler, P.: Cardinalities of finite distributive lattices. Mitt. Math. Sem. Giessen, 121, 1976, 103-124, | MR

[2] Chipalkatti, J.V.: Notes on Grassmannians and Schubert varieties. Queen's Papers in Pure and Applied Mathematics, 13, 119, 2000,

[3] Derksen, H., Kemper, G.: Computational invariant theory. 2015, Springer, | MR

[4] Ghorpade, S.R.: Note on Hodge's postulation formula for Schubert varieties. Lecture Notes in Pure and Applied Mathematics, 217, 2001, 211-220, Marcel Dekker, New York, | MR

[5] Gross, B.H., Wallach, N.R.: On the Hilbert polynomials and Hilbert series of homogeneous projective varieties. Arithmetic geometry and automorphic forms, 19, 2011, 253-263, | MR

[6] Hodge, W.V.D.: A note on $k$-connexes. Mathematical Proceedings of the Cambridge Philosophical Society, 38, 2, 1942, 129-143, Cambridge University Press, | DOI | MR

[7] Hodge, W.V.D: Some enumerative results in the theory of forms. Mathematical Proceedings of the Cambridge Philosophical Society, 39, 1, 1943, 22-30, Cambridge University Press, | DOI | MR

[8] Hodge, W.V.D., Pedoe, D.: Methods of algebraic geometry, Volume 2. 1952, Cambridge University Press, | MR

[9] Lakshmibai, V., Brown, J.: The Grassmannian Variety: Geometric and Representation-theoretic Aspects. 42, 2015, Springer, | MR

[10] Littlewood, D.E.: On the number of terms in a simple algebraic form. Mathematical Proceedings of the Cambridge Philosophical Society, 38, 4, 1942, 394-396, Cambridge University Press, | DOI | MR

[11] MacMahon, P.A.: Combinatory analysis. 1916, Cambridge University Press, | MR

[12] Maier, R.: A generalization of Euler's hypergeometric transformation. Transactions of the American Mathematical Society, 358, 1, 2006, 39-57, | DOI | MR

[13] Miller, A.R., Paris, R.B.: Euler-type transformations for the generalized hypergeometric function ${}_{r+2}F_{r+1}(x)$. Zeitschrift für angewandte Mathematik und Physik, 62, 1, 2011, 31-45, | MR

[14] Miller, A.R., Paris, R.B.: Transformation formulas for the generalized hypergeometric function with integral parameter differences. Rocky Mountain Journal of Mathematics, 43, 1, 2013, 291-327, | DOI | MR

[15] Mukai, S.: An introduction to invariants and moduli. 2003, Cambridge University Press, Cambridge Studies in Advanced Mathematics 81. | MR

[16] Nanduri, R.: Hilbert coefficients of Schubert varieties in Grassmannians. Journal of Algebra and Its Applications, 14, 3, 2015, 1550036, | DOI | MR

[17] Narayana, T.V.: A partial order and its applications to probability theory. Sankhya: The Indian Journal of Statistics, 1959, 91-98, | MR

[18] Santos, F., Stump, C., Welker, V.: Noncrossing sets and a Gra\IL2\ss mann associahedron. Forum of Mathematics, Sigma, 5, 2017, 49p, Cambridge University Press, | MR

[19] Stanley, R.P.: Theory and application of plane partitions. Part 2. Studies in Applied Mathematics, 50, 3, 1971, 259-279, | DOI | MR

[20] Sturmfels, B.: Gröbner bases and convex polytopes. 1996, American Mathematical Society, University Lecture Series Vol. 8.. | MR

[21] Sulanke, R.A.: Generalizing Narayana and Schröder numbers to higher dimensions. The Electronic Journal of Combinatorics, 11, 1, 2004, 54p, | DOI | MR

[22] Sulanke, R.A.: Three dimensional Narayana and Schröder numbers. Theoretical computer science, 346, 2--3, 2005, 455-468, | DOI | MR