$\alpha$-modules and generalized submodules
Communications in Mathematics, Tome 27 (2019) no. 1, pp. 13-26
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A QTAG-module $M$ is an $\alpha$-module, where $\alpha $ is a limit ordinal, if $M/H_\beta (M)$ is totally projective for every ordinal $\beta \alpha$. In the present paper $\alpha $-modules are studied with the help of $\alpha $-pure submodules, $\alpha $-basic submodules, and $\alpha$-large submodules. It is found that an $\alpha $-closed $\alpha$-module is an $\alpha $-injective. For any ordinal $\omega \leq \alpha \leq \omega _1$ we prove that an $\alpha $-large submodule $L$ of an $\omega _1$-module $M$ is summable if and only if $M$ is summable.
A QTAG-module $M$ is an $\alpha$-module, where $\alpha $ is a limit ordinal, if $M/H_\beta (M)$ is totally projective for every ordinal $\beta \alpha$. In the present paper $\alpha $-modules are studied with the help of $\alpha $-pure submodules, $\alpha $-basic submodules, and $\alpha$-large submodules. It is found that an $\alpha $-closed $\alpha$-module is an $\alpha $-injective. For any ordinal $\omega \leq \alpha \leq \omega _1$ we prove that an $\alpha $-large submodule $L$ of an $\omega _1$-module $M$ is summable if and only if $M$ is summable.
Classification : 16K20
Keywords: $\alpha$-modules; $\alpha$-pure submodules; $\alpha$-basic submodules; $\alpha$-large submodules.
@article{COMIM_2019_27_1_a1,
     author = {Rafiquddin, Rafiquddin and Hasan, Ayazul and Ahmad, Mohammad Fareed},
     title = {$\alpha$-modules and generalized submodules},
     journal = {Communications in Mathematics},
     pages = {13--26},
     year = {2019},
     volume = {27},
     number = {1},
     mrnumber = {3977474},
     zbl = {1464.16013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a1/}
}
TY  - JOUR
AU  - Rafiquddin, Rafiquddin
AU  - Hasan, Ayazul
AU  - Ahmad, Mohammad Fareed
TI  - $\alpha$-modules and generalized submodules
JO  - Communications in Mathematics
PY  - 2019
SP  - 13
EP  - 26
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a1/
LA  - en
ID  - COMIM_2019_27_1_a1
ER  - 
%0 Journal Article
%A Rafiquddin, Rafiquddin
%A Hasan, Ayazul
%A Ahmad, Mohammad Fareed
%T $\alpha$-modules and generalized submodules
%J Communications in Mathematics
%D 2019
%P 13-26
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a1/
%G en
%F COMIM_2019_27_1_a1
Rafiquddin, Rafiquddin; Hasan, Ayazul; Ahmad, Mohammad Fareed. $\alpha$-modules and generalized submodules. Communications in Mathematics, Tome 27 (2019) no. 1, pp. 13-26. http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a1/

[1] Ansari, A. H., Ahmad, M., Khan, M.Z.: Some decomposition theorems on $S_2$-modules. III. Tamkang J. Math., 12, 2, 1981, 147-154, | MR

[2] Benabdallah, K., Singh, S.: On torsion abelian groups like modules. Lecture Notes in Mathematics, Springer Verlag, 1006, 1983, 639-653, | MR

[3] Fuchs, L.: Infinite Abelian Groups. 1970, Academic Press, New York, Vol. I. | MR

[4] Fuchs, L.: Infinite Abelian Groups. 1973, Academic Press, New York, Vol. II. | MR | Zbl

[5] Hasan, A.: On essentially finitely indecomposable QTAG-modules. Afrika Mat., 27, 1, 2016, 79-85, | DOI | MR

[6] Hasan, A.: On generalized submodules of QTAG-modules. Georgian Math. J., 23, 2, 2016, 221-226, | DOI | MR

[7] Hasan, A., Rafiquddin: Notes on summability in QTAG-modules. Tbilisi Math. J., 10, 2, 2017, 235-242, | DOI | MR

[8] Hasan, A., Rafiquddin, Ahmad, M.F.: On $\alpha $-modules and their applications. Southeast Asian Bull. Math., 2019, To appear. | MR

[9] Khan, M.Z.: $h$-divisible and basic submodules. Tamkang J. Math., 10, 2, 1979, 197-203, | MR

[10] Mehdi, A., Abbasi, M.Y., Mehdi, F.: Nice decomposition series and rich modules. South East Asian J. Math. & Math. Sci., 4, 1, 2005, 1-6, | MR

[11] Mehdi, A., Naji, S.A.R.K., Hasan, A.: Small homomorphisms and large submodules of QTAG-modules. Sci. Ser. A. Math Sci., 23, 2012, 19-24, | MR

[12] Mehdi, A., Sikander, F., Naji, S.A.R.K.: Generalizations of basic and large submodules of QTAG-modules. Afrika Mat., 25, 4, 2014, 975-986, | DOI | MR

[13] Mehran, H., Singh, S.: On $\sigma $-pure submodules of QTAG-modules. Arch. Math., 46, 1986, 501-510, | DOI | MR

[14] Naji, S.A.R.K.: A study of different structures in QTAG-modules. 2010, Ph.D. Thesis, Aligarh Muslim University.

[15] Singh, S.: Some decomposition theorems in abelian groups and their generalizations. Ring Theory: Proceedings of Ohio University Conference 25, 1976, 183-189, Marcel Dekker, New York, | MR

[16] Singh, S.: Abelian groups like modules. Act. Math. Hung, 50, 1987, 85-95, | DOI | MR

[17] Singh, S., Khan, M.Z.: TAG-modules with complement submodules $h$-pure. Internat. J. Math. & Math. Sci., 21, 4, 1998, 801-814, | DOI | MR