Lightlike hypersurfaces of an indefinite Kaehler manifold of a quasi-constant curvature
Communications in Mathematics, Tome 27 (2019) no. 1, pp. 1-12
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study lightlike hypersurfaces $M$ of an indefinite Kaehler manifold $\bar {M}$ of quasi-constant curvature subject to the condition that the characteristic vector field $\zeta $ of $\bar {M}$ is tangent to $M$. First, we provide a new result for such a lightlike hypersurface. Next, we investigate such a lightlike hypersurface $M$ of $\bar {M}$ such that (1) the screen distribution $S(TM)$ is totally umbilical or (2) $M$ is screen conformal.
We study lightlike hypersurfaces $M$ of an indefinite Kaehler manifold $\bar {M}$ of quasi-constant curvature subject to the condition that the characteristic vector field $\zeta $ of $\bar {M}$ is tangent to $M$. First, we provide a new result for such a lightlike hypersurface. Next, we investigate such a lightlike hypersurface $M$ of $\bar {M}$ such that (1) the screen distribution $S(TM)$ is totally umbilical or (2) $M$ is screen conformal.
Classification : 53C25, 53C40, 53C50
Keywords: Totally umbilical; Screen conformal; quasi-constant curvature
@article{COMIM_2019_27_1_a0,
     author = {Jin, Dae Ho and Lee, Jae Won},
     title = {Lightlike hypersurfaces of an indefinite {Kaehler} manifold of a quasi-constant curvature},
     journal = {Communications in Mathematics},
     pages = {1--12},
     year = {2019},
     volume = {27},
     number = {1},
     mrnumber = {3977473},
     zbl = {1469.53029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a0/}
}
TY  - JOUR
AU  - Jin, Dae Ho
AU  - Lee, Jae Won
TI  - Lightlike hypersurfaces of an indefinite Kaehler manifold of a quasi-constant curvature
JO  - Communications in Mathematics
PY  - 2019
SP  - 1
EP  - 12
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a0/
LA  - en
ID  - COMIM_2019_27_1_a0
ER  - 
%0 Journal Article
%A Jin, Dae Ho
%A Lee, Jae Won
%T Lightlike hypersurfaces of an indefinite Kaehler manifold of a quasi-constant curvature
%J Communications in Mathematics
%D 2019
%P 1-12
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a0/
%G en
%F COMIM_2019_27_1_a0
Jin, Dae Ho; Lee, Jae Won. Lightlike hypersurfaces of an indefinite Kaehler manifold of a quasi-constant curvature. Communications in Mathematics, Tome 27 (2019) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/COMIM_2019_27_1_a0/

[1] Atindogbe, C., Duggal, K.L.: Conformal screen on lightlike hypersurfaces. International J. of Pure and Applied Math., 11, 4, 2004, 421-442, | MR

[2] Chen, B.Y., Yano, K.: Hypersurfaces of a conformally flat space. Tensor (NS), 26, 1972, 318-322, | MR | Zbl

[3] Duggal, K.L., Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. 1996, Kluwer Acad. Publishers, Dordrecht, | MR

[4] Duggal, K.L., Jin, D.H.: A classification of Einstein lightlike hypersurfaces of a Lorentzian space form. J. Geom. Phys., 60, 2010, 1881-1889, | DOI | MR

[5] Jin, D.H.: Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold. Indian J. of Pure and Applied Math., 41, 4, 2010, 569-581, | DOI | MR

[6] Jin, D.H.: Lightlike real hypersurfaces with totally umbilical screen distributions. Commun. Korean Math. Soc., 25, 3, 2010, 443-450, | DOI | MR

[7] Rham, G. de: Sur la réductibilité d'un espace de Riemannian. Comm. Math. Helv., 26, 1952, 328-344, | DOI | MR