New stability results for spheres and Wulff shapes
Communications in Mathematics, Tome 26 (2018) no. 2, pp. 153-167
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that a closed convex hypersurface of the Euclidean space with almost constant anisotropic first and second mean curvatures in the $L^p$-sense is $W^{2,p}$-close (up to rescaling and translations) to the Wulff shape. We also obtain characterizations of geodesic hyperspheres of space forms improving those of \cite {Ro1} and \cite {Ro}.
We prove that a closed convex hypersurface of the Euclidean space with almost constant anisotropic first and second mean curvatures in the $L^p$-sense is $W^{2,p}$-close (up to rescaling and translations) to the Wulff shape. We also obtain characterizations of geodesic hyperspheres of space forms improving those of \cite {Ro1} and \cite {Ro}.
Classification : 53A10, 53C42
Keywords: Hypersurfaces; Anisotropic mean curvatures; Wulff Shape; Almost umibilcal
@article{COMIM_2018_26_2_a6,
     author = {Roth, Julien},
     title = {New stability results for spheres and {Wulff} shapes},
     journal = {Communications in Mathematics},
     pages = {153--167},
     year = {2018},
     volume = {26},
     number = {2},
     mrnumber = {3898200},
     zbl = {07058962},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a6/}
}
TY  - JOUR
AU  - Roth, Julien
TI  - New stability results for spheres and Wulff shapes
JO  - Communications in Mathematics
PY  - 2018
SP  - 153
EP  - 167
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a6/
LA  - en
ID  - COMIM_2018_26_2_a6
ER  - 
%0 Journal Article
%A Roth, Julien
%T New stability results for spheres and Wulff shapes
%J Communications in Mathematics
%D 2018
%P 153-167
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a6/
%G en
%F COMIM_2018_26_2_a6
Roth, Julien. New stability results for spheres and Wulff shapes. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 153-167. http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a6/

[1] Lellis, C. De, Müller, S.: Optimal rigidity estimates for nearly umbilical surfaces. J. Diff. Geom., 69, 1, 2005, 75-110, | DOI | MR

[2] Rosa, A. De, Gioffrè, S.: Quantitative stability for anisotropic nearly umbilical hypersurfaces. 2017, arXiv:1705.09994. | MR

[3] Gioffrè, S.: A $W^{2,p}$-estimate for nearly umbilical hypersurfaces. 2016, arXiv:1612.08570.

[4] He, Y., Li, H.: Integral formula of Minkowski type and new characterization of the Wulff shape. Acta Math. Sinica, 24, 4, 2008, 697-704, | DOI | MR

[5] Hoffman, D., Spruck, D.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure Appl. Math., 27, 1974, 715-727, | DOI | MR | Zbl

[6] Michael, J. H., Simon, L. M.: Sobolev and mean-value inequalities on generalized submanifolds of $R^n$. Comm. Pure Appl. Math., 26, 1973, 361-379, | DOI | MR

[7] Onat, L.: Some characterizations of the Wulff shape. C. R. Math. Acad. Sci. Paris, 348, 17-18, 2010, 997-1000, | DOI | MR

[8] Perez, D.: On nearly umbilical hypersurfaces. 2011, Ph.D. thesis, Universität Zürich.

[9] Roth, J.: Extrinsic radius pinching for hypersurfaces of space forms. Diff. Geom. Appl., 25, 5, 2007, 485-499, | DOI | MR

[10] Roth, J.: Rigidity results for geodesic spheres in space forms. Differential Geometry, Proceedings of the VIIIth International Colloquium in Differential Geometry, Santiago de Compostela, 2009, 156-163, World Scientific, | MR

[11] Roth, J.: Une nouvelle caractérisation des sphères géodésiques dans les espaces modèles. Compte-Rendus - Mathématique, 347, 19-20, 2009, 1197-1200, | DOI | MR

[12] Roth, J.: A remark on almost umbilical hypersurfaces. Arch. Math. (Brno), 49, 1, 2013, 1-7, | DOI | MR

[13] Roth, J., Scheuer, J.: Explicit rigidity of almost-umbilical hypersurfaces. 2015, arXiv preprint arXiv:1504.05749. | MR

[14] Topping, P.: Relating diameter and mean curvature for submanifolds of Euclidean space. Comment. Math. Helv., 83, 3, 2008, 539-546, | DOI | MR

[15] Wu, J.Y., Zheng, Y.: Relating diameter and mean curvature for Riemannian submanifolds. Proc. Amer. Math. Soc., 139, 11, 2011, 4097-4104, | DOI | MR