Keywords: Hypersurfaces; Anisotropic mean curvatures; Wulff Shape; Almost umibilcal
@article{COMIM_2018_26_2_a6,
author = {Roth, Julien},
title = {New stability results for spheres and {Wulff} shapes},
journal = {Communications in Mathematics},
pages = {153--167},
year = {2018},
volume = {26},
number = {2},
mrnumber = {3898200},
zbl = {07058962},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a6/}
}
Roth, Julien. New stability results for spheres and Wulff shapes. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 153-167. http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a6/
[1] Lellis, C. De, Müller, S.: Optimal rigidity estimates for nearly umbilical surfaces. J. Diff. Geom., 69, 1, 2005, 75-110, | DOI | MR
[2] Rosa, A. De, Gioffrè, S.: Quantitative stability for anisotropic nearly umbilical hypersurfaces. 2017, arXiv:1705.09994. | MR
[3] Gioffrè, S.: A $W^{2,p}$-estimate for nearly umbilical hypersurfaces. 2016, arXiv:1612.08570.
[4] He, Y., Li, H.: Integral formula of Minkowski type and new characterization of the Wulff shape. Acta Math. Sinica, 24, 4, 2008, 697-704, | DOI | MR
[5] Hoffman, D., Spruck, D.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure Appl. Math., 27, 1974, 715-727, | DOI | MR | Zbl
[6] Michael, J. H., Simon, L. M.: Sobolev and mean-value inequalities on generalized submanifolds of $R^n$. Comm. Pure Appl. Math., 26, 1973, 361-379, | DOI | MR
[7] Onat, L.: Some characterizations of the Wulff shape. C. R. Math. Acad. Sci. Paris, 348, 17-18, 2010, 997-1000, | DOI | MR
[8] Perez, D.: On nearly umbilical hypersurfaces. 2011, Ph.D. thesis, Universität Zürich.
[9] Roth, J.: Extrinsic radius pinching for hypersurfaces of space forms. Diff. Geom. Appl., 25, 5, 2007, 485-499, | DOI | MR
[10] Roth, J.: Rigidity results for geodesic spheres in space forms. Differential Geometry, Proceedings of the VIIIth International Colloquium in Differential Geometry, Santiago de Compostela, 2009, 156-163, World Scientific, | MR
[11] Roth, J.: Une nouvelle caractérisation des sphères géodésiques dans les espaces modèles. Compte-Rendus - Mathématique, 347, 19-20, 2009, 1197-1200, | DOI | MR
[12] Roth, J.: A remark on almost umbilical hypersurfaces. Arch. Math. (Brno), 49, 1, 2013, 1-7, | DOI | MR
[13] Roth, J., Scheuer, J.: Explicit rigidity of almost-umbilical hypersurfaces. 2015, arXiv preprint arXiv:1504.05749. | MR
[14] Topping, P.: Relating diameter and mean curvature for submanifolds of Euclidean space. Comment. Math. Helv., 83, 3, 2008, 539-546, | DOI | MR
[15] Wu, J.Y., Zheng, Y.: Relating diameter and mean curvature for Riemannian submanifolds. Proc. Amer. Math. Soc., 139, 11, 2011, 4097-4104, | DOI | MR