Keywords: Almost complex structure; curvature operator; integrability; tangent bundle
@article{COMIM_2018_26_2_a4,
author = {Baghban, Amir and Abedi, Esmaeil},
title = {A new class of almost complex structures on tangent bundle of a {Riemannian} manifold},
journal = {Communications in Mathematics},
pages = {137--145},
year = {2018},
volume = {26},
number = {2},
mrnumber = {3898198},
zbl = {07058960},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a4/}
}
TY - JOUR AU - Baghban, Amir AU - Abedi, Esmaeil TI - A new class of almost complex structures on tangent bundle of a Riemannian manifold JO - Communications in Mathematics PY - 2018 SP - 137 EP - 145 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a4/ LA - en ID - COMIM_2018_26_2_a4 ER -
Baghban, Amir; Abedi, Esmaeil. A new class of almost complex structures on tangent bundle of a Riemannian manifold. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 137-145. http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a4/
[1] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics. Q. J. Math., 62, 2, 2011, 259-288, | DOI | MR
[2] Aguilar, R. M.: Isotropic almost complex structures on tangent bundles. Manuscripta Math., 90, 4, 1996, 429-436, | DOI | MR
[3] Biswas, I., Loftin, J., Stemmler, M.: Flat bundles on affine manifolds. Arabian Journal of Mathematics, 2, 2, 2013, 159-175, | DOI | MR
[4] Choi, J., Mullhaupt, A. P.: Kählerian information geometry for signal processing. Entropy, 17, 2015, 1581-1605, | DOI | MR
[5] Friswell, R. M., Wood, C. M.: Harmonic vector fields on pseudo-Riemannian manifolds. Journal of Geometry and Physics, 112, 2017, 45-58, | DOI | MR
[6] Lisi, S.T.: Applications of Symplectic Geometry to Hamiltonian Mechanics. 2006, PhD thesis, New York University. | MR
[7] Petersen, P.: Riemannian Geometry. 2006, Springer, | MR | Zbl
[8] Peyghan, E., Heydari, A., Far, L. Nourmohammadi: On the geometry of tangent bundles with a class of metrics. Annales Polonici Mathematici, 103, 2012, 229-246, | DOI | MR
[9] Peyghan, E., Nasrabadi, H., Tayebi, A.: The homogenous lift to the $(1,1)$-tensor bundle of a Riemannian metric. Int. J. Geom Meth. Modern Phys., 10, 4, 2013, 18p, | MR
[10] Salimov, A. A., Gezer, A.: On the geometry of the $(1,1)$-tensor bundle with Sasaki type metric. Chinese Ann. Math. Ser. B, 32, 3, 2011, 1-18, | DOI | MR
[11] Zhang, J., Li, F.: Symplectic and Kähler structures on statistical manifolds induced from divergence functions. Conference paper in Geometric Science of Information, 2013, 595-603, Springer, | MR