A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds
Communications in Mathematics, Tome 26 (2018) no. 2, pp. 127-136 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study $\phi $-recurrence $\tau $-curvature tensor in\\ $(k,\mu )$-contact metric manifolds.
In this paper we study $\phi $-recurrence $\tau $-curvature tensor in\\ $(k,\mu )$-contact metric manifolds.
Classification : 53C15, 53C25, 53D15
Keywords: Contact metric manifold; curvature tensor; Ricci tensor; Ricci operator.
@article{COMIM_2018_26_2_a3,
     author = {Ingalahalli, Gurupadavva and Bagewadi, C.S.},
     title = {A {Study} on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds},
     journal = {Communications in Mathematics},
     pages = {127--136},
     year = {2018},
     volume = {26},
     number = {2},
     mrnumber = {3898194},
     zbl = {07058956},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a3/}
}
TY  - JOUR
AU  - Ingalahalli, Gurupadavva
AU  - Bagewadi, C.S.
TI  - A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds
JO  - Communications in Mathematics
PY  - 2018
SP  - 127
EP  - 136
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a3/
LA  - en
ID  - COMIM_2018_26_2_a3
ER  - 
%0 Journal Article
%A Ingalahalli, Gurupadavva
%A Bagewadi, C.S.
%T A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds
%J Communications in Mathematics
%D 2018
%P 127-136
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a3/
%G en
%F COMIM_2018_26_2_a3
Ingalahalli, Gurupadavva; Bagewadi, C.S. A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 127-136. http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a3/

[1] Blair, D.E.: Contact metric manifolds in Riemannian geometry. 1976, Springer-Verlag, Berlin-New-York, Lecture Notes in Mathematics 509. | DOI | MR

[2] Blair, D.E., Koufogiorgos, T., Papantoniou, B.J.: Contact metric manifolds satisfying a nullity condition. Israel J. Math., 91, 1995, 189-214, | DOI | MR | Zbl

[3] Boeckx, E., Buecken, P., Vanhecke, L.: $\phi $-symmetric contact metric spaces. Glasgow Math. J., 41, 1999, 409-416, | DOI | MR

[4] De, U.C., Gazi, A.K.: On $\phi $-recurrent $N(k)$-contact metric manifolds. Math. J. Okayama Univ., 50, 2008, 101-112, | MR

[5] De, U.C., Shaikh, A.A., Biswas, S.: On $\phi $-recurrent Sasakian manifolds. Novi Sad J. Math., 33, 2003, 13-48, | MR

[6] Nagaraja, H.G., Somashekhara, G.: $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds. Mathematica Aeterna, 2, 6, 2012, 523-532, | MR

[7] Papantonion, B.J.: Contact Riemannian manifolds satisfying $R(\xi ,X)\cdot R=0$ and $\xi \in (k,\mu )$-nullity distribution. Yokohama Math. J., 40, 2, 1993, 149-161, | MR

[8] Premalatha, C.R., Nagaraja, H.G.: On Generalized $(k,\mu )$-space forms. Journal of Tensor Society, 7, 2013, 29-38, | MR

[9] Shaikh, A.A., Baishya, K.K.: On $(k,\mu )$-contact metric manifolds. Differential Geometry - Dynamical Systems, 8, 2006, 253-261, | MR

[10] Sharma, R., Blair, D.E.: Conformal motion of contact manifolds with characteristic vector field in the $k$-nullity distribution. Illinois J. Math., 42, 1998, 673-677, | DOI | MR

[11] Tanno, S.: Ricci curvatures of contact Riemannian manifolds. Tohoku Math. J., 40, 1988, 441-448, | DOI | MR | Zbl

[12] Takahashi, T.: Sasakian $\phi $-symmetric spaces. Tohoku Math. J., 29, 1977, 91-113, | DOI | MR

[13] Tripathi, M.M., Gupta, P.: $\tau $-curvature tensor on a semi-Riemannian manifold. J. Adv. Math. Stud., 4, 1, 2011, 117-129, | MR

[14] Tripathi, M.M., Gupta, P.: On $\tau $-curvature tensor in K-contact and Sasakian manifolds. International Electronic Journal of Geometry, 4, 2011, 32-47, | MR

[15] Tripathi, M.M., Gupta, P.: $(N(k),\xi )$-semi-Riemannian manifolds: Semisymmetries. arXiv:1202.6138v[math.DG], 28, 2012, | MR