Geometry of Mus-Sasaki metric
Communications in Mathematics, Tome 26 (2018) no. 2, pp. 113-126 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we introduce the Mus-Sasaki metric on the tangent bundle $TM$ as a new natural metric non-rigid on $TM$. First we investigate the geometry of the Mus-Sasakian metrics and we characterize the sectional curvature and the scalar curvature.
In this paper, we introduce the Mus-Sasaki metric on the tangent bundle $TM$ as a new natural metric non-rigid on $TM$. First we investigate the geometry of the Mus-Sasakian metrics and we characterize the sectional curvature and the scalar curvature.
Classification : 53A45, 53C20, 58E20
Keywords: Horizontal lift; vertical lift; Mus-Sasaki metric; scalar curvature.
@article{COMIM_2018_26_2_a2,
     author = {Zagane, Abderrahim and Djaa, Mustapha},
     title = {Geometry of {Mus-Sasaki} metric},
     journal = {Communications in Mathematics},
     pages = {113--126},
     year = {2018},
     volume = {26},
     number = {2},
     mrnumber = {3898197},
     zbl = {07058959},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a2/}
}
TY  - JOUR
AU  - Zagane, Abderrahim
AU  - Djaa, Mustapha
TI  - Geometry of Mus-Sasaki metric
JO  - Communications in Mathematics
PY  - 2018
SP  - 113
EP  - 126
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a2/
LA  - en
ID  - COMIM_2018_26_2_a2
ER  - 
%0 Journal Article
%A Zagane, Abderrahim
%A Djaa, Mustapha
%T Geometry of Mus-Sasaki metric
%J Communications in Mathematics
%D 2018
%P 113-126
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a2/
%G en
%F COMIM_2018_26_2_a2
Zagane, Abderrahim; Djaa, Mustapha. Geometry of Mus-Sasaki metric. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 113-126. http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a2/

[1] Abbassi, M.T.K., Sarih, M.: On Natural Metrics on Tangent Bundles of Riemannian Manifolds. Archivum Mathematicum, 41, 2005, 71-92, | MR

[2] Cengiz, N., Salimov, A.A.: Diagonal lift in the tensor bundle and its applications. Appl. Math. Comput., 142, 2--3, 2003, 309-319, | MR

[3] Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. of Math., 96, 2, 1972, 413-443, | DOI | MR | Zbl

[4] Djaa, M., Djaa, N.E.H., Nasri, R.: Natural Metrics on $T^{2}M$ and Harmonicity. International Electronic Journal of Geometry, 6, 1, 2013, 100-111, | MR

[5] Djaa, M., Gancarzewicz, J.: The geometry of tangent bundles of order r. Boletin Academia, Galega de Ciencias, 4, 1985, 147-165, | MR

[6] Djaa, N.E.H., Ouakkas, S., Djaa, M.: Harmonic sections on the tangent bundle of order two. Annales Mathematicae et Informaticae, 38, 2011, 15-25, | MR

[7] Dombrowski, P.: On the Geometry of the Tangent Bundle. J. Reine Angew. Math., 210, 1962, 73-88, | MR

[8] Gezer, A.: On the Tangent Bundle With Deformed Sasaki Metric. International Electronic Journal of Geometry, 6, 2, 2013, 19-31, | MR

[9] Gudmundsson, S., Kappos, E.: On the Geometry of the Tangent Bundle with the Cheeger-Gromoll Metric. Tokyo J. Math., 25, 1, 2002, 75-83, | DOI | MR

[10] Sekizawa, O. Kowalski and M.: On Riemannian Geometry Of Tangent Sphere Bundles With Arbitrary Constant Radius. Archivum Mathematicum, 44, 2008, 391-401, | MR

[11] Musso, E., Tricerri, F.: Riemannian Metrics on Tangent Bundles. Ann. Mat. Pura Appl., 150, 4, 1988, 1-19, | DOI | MR

[12] Salimov, A.A., Agca, F.: Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterranean Journal of Mathematics, 8, 2, 2011, 243-255, | MR

[13] Salimov, A.A, Gezer, A.: On the geometry of the $(1, 1$)-tensor bundle with Sasaki type metric. Chinese Annals of Mathematics, 32, 3, 2011, 369-386, | DOI | MR

[14] Salimov, A.A., Gezer, A., Akbulut, K.: Geodesics of Sasakian metrics on tensor bundles. Mediterr. J. Math, 6, 2, 2009, 135-147, | DOI | MR

[15] Salimov, A.A., Kazimova, S.: Geodesics of the Cheeger-Gromoll Metric. Turk. J. Math., 33, 2009, 99-105, | MR

[16] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds II. Tohoku Math. J., 14, 1962, 146-155, | DOI | MR

[17] Sekizawa, M.: Curvatures of Tangent Bundles with Cheeger-Gromoll Metric. Tokyo J. Math., 14, 2, 1991, 407-417, | DOI | MR

[18] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. 1973, Marcel Dekker. INC., New York, | MR | Zbl