Keywords: Bergman spaces; distance estimates; pseudoconvex domains; analytic functions
@article{COMIM_2018_26_2_a0,
author = {Shamoyan, Romi F. and Mihi\'c, Olivera R.},
title = {On some extremal problems in {Bergman} spaces in weakly pseudoconvex domains},
journal = {Communications in Mathematics},
pages = {83--97},
year = {2018},
volume = {26},
number = {2},
mrnumber = {3898195},
zbl = {07058957},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a0/}
}
TY - JOUR AU - Shamoyan, Romi F. AU - Mihić, Olivera R. TI - On some extremal problems in Bergman spaces in weakly pseudoconvex domains JO - Communications in Mathematics PY - 2018 SP - 83 EP - 97 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a0/ LA - en ID - COMIM_2018_26_2_a0 ER -
Shamoyan, Romi F.; Mihić, Olivera R. On some extremal problems in Bergman spaces in weakly pseudoconvex domains. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 83-97. http://geodesic.mathdoc.fr/item/COMIM_2018_26_2_a0/
[1] Ahn, H., Cho, S.: On the mapping properties of the Bergman projection on pseudoconvex domains with one degenerate eigenvalue. Complex Variables Theory Appl., 39, 4, 1999, 365-379, | DOI | MR
[2] Arsenović , M., Shamoyan, R.: On distance estimates and atomic decomposition on spaces of analytic functions on strictly pseudoconvex domains. Bulletin Korean Math. Society, 52, 1, 2015, 85-103, | MR
[3] Beatrous, F.: Estimates for derivatives of holomorphic functions in strongly pseudoconvex domains. Math. Zam., 191, 1, 1986, 91-116, | DOI | MR
[4] Charpentier, P., Dupain, Y.: Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form. Publ. Mat., 50, 2006, 413-446, | DOI | MR
[5] Chen, B.: Weighted Bergman kernel: asymptotic behavior, applications and comparison results. Studia Mathematica, 174, 2, 2006, 111-130, | DOI | MR
[6] Cho, H.R., Kwon, E.G.: Embedding of Hardy spaces into weighted Bergman spaces in bounded domains with $C^2$ boundary. Illinois J. Math., 48, 3, 2004, 747-757, | DOI | MR
[7] Cho, S.: A mapping property of the Bergman projection on certain pseudoconvex domains. Tóhoku Math. Journal, 48, 1996, 533-542, | DOI | MR
[8] Ehsani, D., Lieb, I.: $L^p$-estimates for the Bergman projection on strictly pseudoconvex nonsmooth domains. Math. Nachr., 281, 7, 2008, 916-929, | DOI | MR
[9] Gheorghe, L.G.: Interpolation of Besov spaces and applications. Le Matematiche, LV, Fasc. I, 2000, 29-42, | MR
[10] Jevtić, M.: Besov spaces on bounded symmetric domains. Matematički vesnik, 49, 1997, 229-233, | MR
[11] Lanzani, L., Stein, E.M.: The Bergman projection in $L^p$ for domains with minimal smoothness. Illinois Journal of Mathematics, 56, 1, 2012, 127-154, | DOI | MR
[12] McNeal, J.D., Stein, E.M.: Mapping properties of the Bergman projection on convex domain of finite type. Duke Math. J., 73, 1994, 177-199, | MR
[13] Phong, D.H., Stein, E.M.: Estimates for the Bergman and Szegö projection on strongly pseudoconvex domains. Duke Math. J., 44, 1977, 695-704, | MR
[14] Shamoyan, R.F., Kurilenko, S.M.: On extremal problems in tubular domains over symmetric cones. Issues of Analysis, 1, 2014, 44-65, | DOI | MR
[15] Shamoyan, R.F., Mihić , O.: Extremal Problems in Certain New Bergman Type Spaces in Some Bounded Domains in $\mathbb {C}^{n}$. Journal of Function Spaces, 2014, 2014, p. 11, Article ID 975434. | MR
[16] Shamoyan, R.F., Mihić, O.: On distance function in some new analytic Bergman type spaces in $\mathbb {C}^{n}$. Journal of Function Spaces, 2014, 2014, p. 10, Article ID 275416. | MR
[17] Shamoyan, R.F., Mihić, O.: On new estimates for distances in analytic function spaces in higher dimension. Siberian Electronic Mathematical Reports, 6, 2009, 514-517, | MR | Zbl
[18] Zhu, K.: Holomorphic Besov spaces on bounded symmetric domains. Quarterly J. Math., 46, 1995, 239-256, | DOI | MR
[19] Zhu, K.: Holomorphic Besov spaces on bounded symmetric domains, III. Indiana University Mathematical Journal, 44, 1995, 1017-1031, | MR