Keywords: weighted functional spaces; weighted functional sets; weighted Sobolev spaces.
@article{COMIM_2018_26_1_a3,
author = {Rukavishnikov, V.A. and Matveeva, E.V. and Rukavishnikova, E.I.},
title = {The {Properties} of the {Weighted} {Space} $H_{2,\alpha }^k(\Omega )$ and {Weighted} {Set} $W_{2,\alpha }^k(\Omega ,\delta )$},
journal = {Communications in Mathematics},
pages = {31--45},
year = {2018},
volume = {26},
number = {1},
mrnumber = {3827142},
zbl = {1411.46032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2018_26_1_a3/}
}
TY - JOUR
AU - Rukavishnikov, V.A.
AU - Matveeva, E.V.
AU - Rukavishnikova, E.I.
TI - The Properties of the Weighted Space $H_{2,\alpha }^k(\Omega )$ and Weighted Set $W_{2,\alpha }^k(\Omega ,\delta )$
JO - Communications in Mathematics
PY - 2018
SP - 31
EP - 45
VL - 26
IS - 1
UR - http://geodesic.mathdoc.fr/item/COMIM_2018_26_1_a3/
LA - en
ID - COMIM_2018_26_1_a3
ER -
%0 Journal Article
%A Rukavishnikov, V.A.
%A Matveeva, E.V.
%A Rukavishnikova, E.I.
%T The Properties of the Weighted Space $H_{2,\alpha }^k(\Omega )$ and Weighted Set $W_{2,\alpha }^k(\Omega ,\delta )$
%J Communications in Mathematics
%D 2018
%P 31-45
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2018_26_1_a3/
%G en
%F COMIM_2018_26_1_a3
Rukavishnikov, V.A.; Matveeva, E.V.; Rukavishnikova, E.I. The Properties of the Weighted Space $H_{2,\alpha }^k(\Omega )$ and Weighted Set $W_{2,\alpha }^k(\Omega ,\delta )$. Communications in Mathematics, Tome 26 (2018) no. 1, pp. 31-45. http://geodesic.mathdoc.fr/item/COMIM_2018_26_1_a3/
[1] Apel, T., Sändig, A-M., Whiteman, J.R.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci., 19, 1, 1996, 63-85, | DOI | MR
[2] Arroyo, D., Bespalov, A., Heuer, N.: On the finite element method for elliptic problems with degenerate and singular coefficients. Math. Comp., 76, 258, 2007, 509-537, | DOI | MR
[3] Assous, F., Ciarlet, J., Garcia, E., Segré, J.: Time-dependent Maxwell's equations with charges in singular geometries. Comput. Methods Appl. Mech. Engrg., 196, 1--3, 2006, 665-681, | DOI | MR
[4] Assous, F., Jr, P. Ciarlet, Segré, J.: Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method. J. Comput. Phys., 161, 1, 2000, 218-249, | DOI | MR
[5] Belytschko, T., Gracie, R., Ventura, G.: A review of extended generalized finite element methods for material modeling. Model. Simul. Sci. Eng., 17, 4, 2009, 043001, | DOI
[6] Bordas, S., Duflot, M., Le, P.: A simple error estimator for extended finite elements. Int. J. Numer. Methods Eng., 24, 2008, 961-971, | DOI | MR
[7] Byfut, A., Schrödinger, A.: hp-Adaptive extended finite element method. Int. J. Numer. Methods Eng., 89, 2012, 1392-1418, | DOI | MR
[8] Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math., 93, 2, 2002, 239-277, | DOI | MR
[9] Costabel, M., Dauge, M., Schwab, C.: Exponential convergence of hp-FEM for Maxwell equations with weighted regularization in polygonal domains. Math. Models Methods Appl. Sci., 15, 4, 2005, 575-622, | DOI | MR
[10] Ivannikov, V., Tiago, C., Almeida, J.P. Moitinho de, Díez, P.: Meshless methods in dual analysis: theoretical and implementation issues. Proceedings of the V International Conference on Adaptive Modeling and Simulation (ADMOS 2011), Paris, France, 2011, 291-308,
[11] Li, H., Nistor, V.: Analysis of a modified Schrödinger operator in 2D: regularity, index, and FEM. J. Comput. Appl. Math., 224, 1, 2009, 320-338, | DOI | MR
[12] Liu, G.R., Nguyen-Thoi, T.: Smoothed finite elements methods. 2010, CRC Press/Taylor & Francis Group,
[13] Morin, P., Hochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev., 44, 5, 2002, 631-658, | DOI | MR
[14] Nguyen-Xuana, H., Liuc, G.R., Bordasd, S., Natarajane, S., Rabczukf, T.: An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Comput. Methods Appl .Mech. Engrg., 253, 2013, 252-273, | DOI | MR
[15] Nguyen-Thoi, T., Vu-Do, H., Rabczuk, T., Nguyen-Xuan, H.: A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Comput. Methods Appl. Mech. Engrg., 199, 2010, 3005-3027, | DOI | MR
[16] Nguyen, V.P., Rabczuk, T., Bordas, S., Dufolt, M.: Meshless methods: A review and computer implementation aspects. Math. Comput. Simulation., 79, 2008, 763-813, | DOI | MR
[17] Rukavishnikov, V.A.: On the differential properties of $R_\nu $-generalized solution of Dirichlet problem. Dokl. Akad. Nauk., 309, 6, 1989, 1318-1320, | MR
[18] Rukavishnikov, V.A.: On the existence and uniqueness of an $R_\nu $-generalized solution of a boundary value problem with uncoordinated degeneration of the input data. Dokl. Math., 90, 2, 2014, 562-564, | DOI | MR
[19] Rukavishnikov, V.A., Mosolapov, A.O.: New numerical method for solving time-harmonic Maxwell equations with strong singularity. J. Comput. Phys., 231, 6, 2012, 2438-2448, | DOI | MR
[20] Rukavishnikov, V.A, Mosolapov, A.O: Weighted edge finite element method for Maxwell's equations with strong singularity. Dokl. Math., 87, 2, 2013, 156-159, | DOI | MR
[21] Rukavishnikov, V.A., Nikolaev, S.G.: On the $R_\nu $-generalized solution of the Lamé system with corner singularity. Dokl. Math., 92, 1, 2015, 421-423, | DOI | MR
[22] Rukavishnikov, V.A., Nikolaev, S.G.: Weighted finite element method for an elasticity problem with singularity. Dokl. Math., 88, 3, 2013, 705-709, | DOI | MR
[23] Rukavishnikov, V., Rukavishnikova, E.: On the existence and uniqueness of $R_\nu $-generalized solution for Dirichlet problem with singularity on all boundary. Abstr. Appl. Anal. 2014, 2014, 568726, | MR
[24] Rukavishnikov, V.A., Rukavishnikova, E.I.: Dirichlet problem with degeneration of the input data on the boundary of the domain. Differ. Equ., 52, 5, 2016, 681-685, | DOI | MR
[25] Rukavishnikov, V.A., Rukavishnikova, H.I.: The finite element method for boundary value problem with strong singularity. J. Comput. Appl. Math., 234, 9, 2010, 2870-2882, | DOI | MR
[26] Rukavishnikov, V.A., Rukavishnikova, H.I.: On the error estimation of the finite element method for the boundary value problems with singularity in the Lebesgue weighted space. Numer. Funct. Anal. Optim., 34, 12, 2013, 1328-1347, | DOI | MR
[27] Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The finite element method: its basis and fundamentals. Sixth edition. 2005, Elsevier, | MR