Keywords: Self-similar group; Cantor set; $p$-adic integers.
@article{COMIM_2018_26_1_a0,
author = {Saltan, Mustafa},
title = {On self-similar subgroups in the sense of {IFS}},
journal = {Communications in Mathematics},
pages = {1--10},
year = {2018},
volume = {26},
number = {1},
mrnumber = {3827139},
zbl = {06996469},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2018_26_1_a0/}
}
Saltan, Mustafa. On self-similar subgroups in the sense of IFS. Communications in Mathematics, Tome 26 (2018) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/COMIM_2018_26_1_a0/
[1] Barnsley, M. F.: Fractals Everywhere. 1988, Academic Press, Boston, | MR
[2] Demir, B., Saltan, M.: A self-similar group in the sense of iterated function system. Far East J. Math. Sci., 60, 1, 2012, 83-99, | MR
[3] Falconer, K. J.: Fractal Geometry. 2003, Mathematical Foundations and Application, John Wiley, | MR
[4] Gouvêa, F. Q.: $p$-adic Numbers. 1997, Springer-Verlag, Berlin, | MR
[5] Hutchinson, J. E.: Fractals and self-similarity. Indiana Univ. Math. J., 30, 5, 1981, 713-747, | DOI | MR | Zbl
[6] Mandelbrot, B. B.: The Fractal Geometry of Nature. 1983, W. H. Freeman and Company, New York, | MR
[7] Robert, A. M.: A Course in $p$-adic Analysis. 2000, Springer, | MR | Zbl
[8] Saltan, M., Demir, B.: Self-similar groups in the sense of an IFS and their properties. J. Math. Anal. Appl., 408, 2, 2013, 694-704, | DOI | MR
[9] Saltan, M., Demir, B.: An iterated function system for the closure of the adding machine group. Fractals, 23, 3, 2015, DOI: 10.1142/S0218348X15500334. | DOI | MR
[10] Schikhof, W. H.: Ultrametric Calculus an Introduction to $p$-adic Calculus. 1984, Cambridge University Press, New York, | MR