On self-similar subgroups in the sense of IFS
Communications in Mathematics, Tome 26 (2018) no. 1, pp. 1-10 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we first give several properties with respect to subgroups of self-similar groups in the sense of iterated function system (IFS). We then prove that some subgroups of $p$-adic numbers $\mathbb{Q}_{p}$ are strong self-similar in the sense of IFS.
In this paper, we first give several properties with respect to subgroups of self-similar groups in the sense of iterated function system (IFS). We then prove that some subgroups of $p$-adic numbers $\mathbb{Q}_{p}$ are strong self-similar in the sense of IFS.
Classification : 11E95, 28A80, 47H10
Keywords: Self-similar group; Cantor set; $p$-adic integers.
@article{COMIM_2018_26_1_a0,
     author = {Saltan, Mustafa},
     title = {On self-similar subgroups in the sense of {IFS}},
     journal = {Communications in Mathematics},
     pages = {1--10},
     year = {2018},
     volume = {26},
     number = {1},
     mrnumber = {3827139},
     zbl = {06996469},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2018_26_1_a0/}
}
TY  - JOUR
AU  - Saltan, Mustafa
TI  - On self-similar subgroups in the sense of IFS
JO  - Communications in Mathematics
PY  - 2018
SP  - 1
EP  - 10
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2018_26_1_a0/
LA  - en
ID  - COMIM_2018_26_1_a0
ER  - 
%0 Journal Article
%A Saltan, Mustafa
%T On self-similar subgroups in the sense of IFS
%J Communications in Mathematics
%D 2018
%P 1-10
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2018_26_1_a0/
%G en
%F COMIM_2018_26_1_a0
Saltan, Mustafa. On self-similar subgroups in the sense of IFS. Communications in Mathematics, Tome 26 (2018) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/COMIM_2018_26_1_a0/

[1] Barnsley, M. F.: Fractals Everywhere. 1988, Academic Press, Boston, | MR

[2] Demir, B., Saltan, M.: A self-similar group in the sense of iterated function system. Far East J. Math. Sci., 60, 1, 2012, 83-99, | MR

[3] Falconer, K. J.: Fractal Geometry. 2003, Mathematical Foundations and Application, John Wiley, | MR

[4] Gouvêa, F. Q.: $p$-adic Numbers. 1997, Springer-Verlag, Berlin, | MR

[5] Hutchinson, J. E.: Fractals and self-similarity. Indiana Univ. Math. J., 30, 5, 1981, 713-747, | DOI | MR | Zbl

[6] Mandelbrot, B. B.: The Fractal Geometry of Nature. 1983, W. H. Freeman and Company, New York, | MR

[7] Robert, A. M.: A Course in $p$-adic Analysis. 2000, Springer, | MR | Zbl

[8] Saltan, M., Demir, B.: Self-similar groups in the sense of an IFS and their properties. J. Math. Anal. Appl., 408, 2, 2013, 694-704, | DOI | MR

[9] Saltan, M., Demir, B.: An iterated function system for the closure of the adding machine group. Fractals, 23, 3, 2015, DOI: 10.1142/S0218348X15500334. | DOI | MR

[10] Schikhof, W. H.: Ultrametric Calculus an Introduction to $p$-adic Calculus. 1984, Cambridge University Press, New York, | MR