Estimating the critical determinants of a class of three-dimensional star bodies
Communications in Mathematics, Tome 25 (2017) no. 2, pp. 149-157 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the problem of (simultaneous) Diophantine approximation in~$\mathbb{R}^3$ (in the spirit of Hurwitz's theorem), lower bounds for the critical determinant of the special three-dimensional body $$ K_2:\quad (y^2+z^2)(x^2+y^2+z^2)\le 1 $$ play an important role; see [1], [6]. This article deals with estimates from below for the critical determinant $\Delta (K_c)$ of more general star bodies $$ K_c:\quad (y^2+z^2)^{c/2}(x^2+y^2+z^2)\le 1, $$ where $c$ is any positive constant. These are obtained by inscribing into $K_c$ either a double cone, or an ellipsoid, or a double paraboloid, depending on the size of $c$.
In the problem of (simultaneous) Diophantine approximation in~$\mathbb{R}^3$ (in the spirit of Hurwitz's theorem), lower bounds for the critical determinant of the special three-dimensional body $$ K_2:\quad (y^2+z^2)(x^2+y^2+z^2)\le 1 $$ play an important role; see [1], [6]. This article deals with estimates from below for the critical determinant $\Delta (K_c)$ of more general star bodies $$ K_c:\quad (y^2+z^2)^{c/2}(x^2+y^2+z^2)\le 1, $$ where $c$ is any positive constant. These are obtained by inscribing into $K_c$ either a double cone, or an ellipsoid, or a double paraboloid, depending on the size of $c$.
Classification : 11H16, 11J13
Keywords: Geometry of numbers; critical determinant; simultaneous Diophantine approximation
@article{COMIM_2017_25_2_a4,
     author = {Nowak, Werner Georg},
     title = {Estimating the critical determinants of a class of three-dimensional star bodies},
     journal = {Communications in Mathematics},
     pages = {149--157},
     year = {2017},
     volume = {25},
     number = {2},
     mrnumber = {3745434},
     zbl = {06888205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a4/}
}
TY  - JOUR
AU  - Nowak, Werner Georg
TI  - Estimating the critical determinants of a class of three-dimensional star bodies
JO  - Communications in Mathematics
PY  - 2017
SP  - 149
EP  - 157
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a4/
LA  - en
ID  - COMIM_2017_25_2_a4
ER  - 
%0 Journal Article
%A Nowak, Werner Georg
%T Estimating the critical determinants of a class of three-dimensional star bodies
%J Communications in Mathematics
%D 2017
%P 149-157
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a4/
%G en
%F COMIM_2017_25_2_a4
Nowak, Werner Georg. Estimating the critical determinants of a class of three-dimensional star bodies. Communications in Mathematics, Tome 25 (2017) no. 2, pp. 149-157. http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a4/

[1] Armitage, J.V.: On a method of Mordell in the geometry of numbers. Mathematika, 2, 2, 1955, 132-140, | DOI | MR | Zbl

[2] Davenport, H., Mahler, K.: Simultaneous Diophantine approximation. Duke Math. J., 13, 1946, 105-111, | DOI | MR | Zbl

[3] Davenport, H.: On a theorem of Furtwängler. J. London Math.Soc., 30, 1955, 185-195, | MR | Zbl

[4] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers. 1987, North Holland, Amsterdam, | MR | Zbl

[5] Minkowski, H.: Dichteste gitterförmige Lagerung kongruenter Körper. Nachr. Kön. Ges. Wiss. Göttingen, 1904, 311-355,

[6] Nowak, W.G.: The critical determinant of the double paraboloid and Diophantine approximation in $\mathbb{R}^3$ and $\mathbb{R}^4$. Math. Pannonica, 10, 1999, 111-122, | MR

[7] Nowak, W.G.: Diophantine approximation in $\mathbb{R}^s$: On a method of Mordell and Armitage. Algebraic number theory and Diophantine analysis. Proceedings of the conference held in Graz, Austria, August 30 to September 5, 1998, W. de Gruyter, Berlin, 2000, 339-349, | MR

[8] Nowak, W.G.: Lower bounds for simultaneous Diophantine approximation constants. Comm. Math., 22, 1, 2014, 71-76, | MR | Zbl

[9] Nowak, W.G.: Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem. T.M. Rassias and P.M. Pardalos (eds.), Essays in mathematics and its applications, 2016, 181-197, Springer, Switzerland, | MR

[10] Nowak, W.G.: On the critical determinants of certain star bodies. Comm. Math., 25, 1, 2017, 5-11, | DOI | MR

[11] Ollerenshaw, K.: The critical lattices of a sphere. J. London Math. Soc., 23, 1949, 297-299, | MR | Zbl

[12] Whitworth, J.V.: The critical lattices of the double cone. Proc. London Math. Soc., 2, 1, 1951, 422-443, | DOI | MR | Zbl