Convolution of second order linear recursive sequences II
Communications in Mathematics, Tome 25 (2017) no. 2, pp. 137-148 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We continue the investigation of convolutions of second order linear recursive sequences (see the first part in [1]). In this paper, we focus on the case when the characteristic polynomials of the sequences have common root.
We continue the investigation of convolutions of second order linear recursive sequences (see the first part in [1]). In this paper, we focus on the case when the characteristic polynomials of the sequences have common root.
Classification : 11B37, 11B39
Keywords: Convolution; generating function; linear recurrence sequences; Fibonacci sequence.
@article{COMIM_2017_25_2_a3,
     author = {Szak\'acs, Tam\'as},
     title = {Convolution of second order linear recursive sequences {II}},
     journal = {Communications in Mathematics},
     pages = {137--148},
     year = {2017},
     volume = {25},
     number = {2},
     mrnumber = {3745433},
     zbl = {06888204},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a3/}
}
TY  - JOUR
AU  - Szakács, Tamás
TI  - Convolution of second order linear recursive sequences II
JO  - Communications in Mathematics
PY  - 2017
SP  - 137
EP  - 148
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a3/
LA  - en
ID  - COMIM_2017_25_2_a3
ER  - 
%0 Journal Article
%A Szakács, Tamás
%T Convolution of second order linear recursive sequences II
%J Communications in Mathematics
%D 2017
%P 137-148
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a3/
%G en
%F COMIM_2017_25_2_a3
Szakács, Tamás. Convolution of second order linear recursive sequences II. Communications in Mathematics, Tome 25 (2017) no. 2, pp. 137-148. http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a3/

[1] Szakács, T.: Convolution of second order linear recursive sequences I. Annales Mathematicae et Informaticae, 46, 2016, 205-216, | MR | Zbl

[2] Griffiths, M., Bramham, A.: The Jacobsthal numbers: Two results and two questions. The Fibonacci Quarterly, 53, 2, 2015, 147-151, | MR

[3] Inc., OEIS Foundation: The On-Line Encyclopedia of Integer Sequences. 2011, http://oeis.org

[4] Zhang, Z., He, P.: The Multiple Sum on the Generalized Lucas Sequences. The Fibonacci Quarterly, 40, 2, 2002, 124-127, | MR | Zbl

[5] Zhang, W.: Some Identities Involving the Fibonacci Numbers. The Fibonacci Quarterly, 35, 3, 1997, 225-229, | MR | Zbl

[6] Vajda, S.: Fibonacci & Lucas numbers, and the golden section. Ellis Horwood Books In Mathematics And Its Application, 1989, | MR | Zbl

[7] Jones, J.P., Kiss, P.: Linear recursive sequences and power series. Publ. Math. Debrecen, 41, 1992, 295-306, | MR | Zbl