Keywords: Convolution; generating function; linear recurrence sequences; Fibonacci sequence.
@article{COMIM_2017_25_2_a3,
author = {Szak\'acs, Tam\'as},
title = {Convolution of second order linear recursive sequences {II}},
journal = {Communications in Mathematics},
pages = {137--148},
year = {2017},
volume = {25},
number = {2},
mrnumber = {3745433},
zbl = {06888204},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a3/}
}
Szakács, Tamás. Convolution of second order linear recursive sequences II. Communications in Mathematics, Tome 25 (2017) no. 2, pp. 137-148. http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a3/
[1] Szakács, T.: Convolution of second order linear recursive sequences I. Annales Mathematicae et Informaticae, 46, 2016, 205-216, | MR | Zbl
[2] Griffiths, M., Bramham, A.: The Jacobsthal numbers: Two results and two questions. The Fibonacci Quarterly, 53, 2, 2015, 147-151, | MR
[3] Inc., OEIS Foundation: The On-Line Encyclopedia of Integer Sequences. 2011, http://oeis.org
[4] Zhang, Z., He, P.: The Multiple Sum on the Generalized Lucas Sequences. The Fibonacci Quarterly, 40, 2, 2002, 124-127, | MR | Zbl
[5] Zhang, W.: Some Identities Involving the Fibonacci Numbers. The Fibonacci Quarterly, 35, 3, 1997, 225-229, | MR | Zbl
[6] Vajda, S.: Fibonacci & Lucas numbers, and the golden section. Ellis Horwood Books In Mathematics And Its Application, 1989, | MR | Zbl
[7] Jones, J.P., Kiss, P.: Linear recursive sequences and power series. Publ. Math. Debrecen, 41, 1992, 295-306, | MR | Zbl