Keywords: Riemannian structures; sub-Riemannian structures; three-dimensional Lie groups
@article{COMIM_2017_25_2_a2,
author = {Biggs, Rory},
title = {Isometries of {Riemannian} and {sub-Riemannian} structures on three-dimensional {Lie} groups},
journal = {Communications in Mathematics},
pages = {99--135},
year = {2017},
volume = {25},
number = {2},
mrnumber = {3745432},
zbl = {1395.53034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a2/}
}
Biggs, Rory. Isometries of Riemannian and sub-Riemannian structures on three-dimensional Lie groups. Communications in Mathematics, Tome 25 (2017) no. 2, pp. 99-135. http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a2/
[1] Agrachev, A., Barilari, D.: Sub-Riemannian structures on 3D Lie groups. J. Dyn. Control Syst., 18, 1, 2012, 21-44, | DOI | MR | Zbl
[2] Alekseevskiĭ, D.V.: The conjugacy of polar decompositions of Lie groups. Mat. Sb. (N.S.), 84, 126, 1971, 14-26, | MR
[3] Alekseevskiĭ, D.V.: Homogeneous Riemannian spaces of negative curvature. Mat. Sb. (N.S.), 138, 1, 1975, 93-117, | MR
[4] Bellaïche, A.: The tangent space in sub-Riemannian geometry. A. Bellaïche, J.J. Risler (eds.), Sub-Riemannian geometry, 1996, 1-78, Birkhäuser, Basel, | MR | Zbl
[5] Biggs, R., Nagy, P. T.: On Sub-Riemannian and Riemannian structures on the Heisenberg groups. J. Dyn. Control Syst., 22, 3, 2016, 563-594, | DOI | MR | Zbl
[6] Biggs, R., Remsing, C.C.: On the classification of real four-dimensional Lie groups. J. Lie Theory, 26, 4, 2016, 1001-1035, | MR | Zbl
[7] Biggs, R., Remsing, C.C.: Quadratic Hamilton--Poisson systems in three dimensions: equivalence, stability, and integration. Acta Appl. Math., 148, 2017, 1-59, | DOI | MR
[8] Biggs, R., Remsing, C.C.: Invariant control systems on Lie groups. G. Falcone (ed.), Lie groups, differential equations, and geometry: advances and surveys, 2017, 127-181, Springer, | MR
[9] Capogna, L., Donne, E. Le: Smoothness of subRiemannian isometries. Amer. J. Math., 138, 5, 2016, 1439-1454, | DOI | MR | Zbl
[10] Gordon, C.: Riemannian isometry groups containing transitive reductive subgroups. Math. Ann., 248, 2, 1980, 185-192, | DOI | MR | Zbl
[11] Gordon, C.S., Wilson, E.N.: Isometry groups of Riemannian solvmanifolds. Trans. Amer. Math. Soc., 307, 1, 1988, 245-269, | DOI | MR | Zbl
[12] Ha, K.Y., Lee, J.B.: Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math. Nachr., 282, 6, 2009, 868-898, | DOI | MR | Zbl
[13] Ha, K.Y., Lee, J.B.: The isometry groups of simply connected 3-dimensional unimodular Lie groups. J. Geom. Phys., 62, 2, 2012, 189-203, | DOI | MR | Zbl
[14] Hamenst{ä}dt, U.: Some regularity theorems for Carnot-Carathéodory metrics. J. Differential Geom., 32, 3, 1990, 819-850, | DOI | MR | Zbl
[15] Jurdjevic, V.: Geometric control theory. 1997, Cambridge University Press, Cambridge, | MR | Zbl
[16] Kishimoto, I.: Geodesics and isometries of Carnot groups. J. Math. Kyoto Univ., 43, 3, 2003, 509-522, | DOI | MR | Zbl
[17] Kivioja, V., Donne, E. Le: Isometries of nilpotent metric groups. J. Éc. Polytech. Math., 4, 2017, 473-482, | DOI | MR | Zbl
[18] Krasiński, A., Behr, C.G., Schücking, E., Estabrook, F.B., Wahlquist, H.D., Ellis, G.F.R., Jantzen, R., Kundt, W.: The Bianchi classification in the Schücking-{B}ehr approach. Gen. Relativity Gravitation, 35, 3, 2003, 475-489, | DOI | MR | Zbl
[19] Donne, E. Le, Ottazzi, A.: Isometries of Carnot groups and sub-Finsler homogeneous manifolds. J. Geom. Anal., 26, 1, 2016, 330-345, | DOI | MR | Zbl
[20] Milnor, J.: Curvatures of left invariant metrics on Lie groups. Advances in Math., 21, 3, 1976, 293-329, | MR | Zbl
[21] Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. 2002, American Mathematical Society, Providence, RI, | MR | Zbl
[22] Mubarakzyanov, G.M.: On solvable Lie algebras. Izv. Vysš. Učehn. Zaved. Matematika, 1963, 114-123, In Russian. | MR | Zbl
[23] Patrangenaru, V.: Classifying 3- and 4-dimensional homogeneous Riemannian manifolds by Cartan triples. Pacific J. Math., 173, 2, 1996, 511-532, | DOI | MR | Zbl
[24] Petersen, P.: Riemannian geometry. 2006, Springer, New York, 2nd ed.. | MR | Zbl
[25] Shin, J.: Isometry groups of unimodular simply connected 3-dimensional Lie groups. Geom. Dedicata, 65, 3, 1997, 267-290, | DOI | MR | Zbl
[26] {Š}nobl, L., Winternitz, P.: Classification and identification of Lie algebras. 2014, American Mathematical Society, Providence, RI, | MR | Zbl
[27] Strichartz, R.S.: Sub-Riemannian geometry. J. Differential Geom., 24, 2, 1986, 221-263, | DOI | MR | Zbl
[28] Vershik, A.M., Gershkovich, V.Y.: Nonholonomic dynamical systems, geometry of distributions and variational problems. V.I. Arnol'd, S.P. Novikov (eds.), Dynamical systems VII, 1994, pp. 1-81, Springer, Berlin, | MR
[29] Wilson, E.N.: Isometry groups on homogeneous nilmanifolds. Geom. Dedicata, 12, 3, 1982, 337-346, | DOI | MR | Zbl