Oscillation and Periodicity of a Second Order Impulsive Delay Differential Equation with a Piecewise Constant Argument
Communications in Mathematics, Tome 25 (2017) no. 2, pp. 89-98 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper concerns with the existence of the solutions of a second order impulsive delay differential equation with a piecewise constant argument. Moreover, oscillation, nonoscillation and periodicity of the solutions are investigated.
This paper concerns with the existence of the solutions of a second order impulsive delay differential equation with a piecewise constant argument. Moreover, oscillation, nonoscillation and periodicity of the solutions are investigated.
Classification : 34K06, 34K11, 34K13, 34K45
Keywords: Oscillation; periodicity; piecewise continuous argument; impulsive differential equations.
@article{COMIM_2017_25_2_a1,
     author = {Oztepe, Gizem S. and Karakoc, Fatma and Bereketoglu, Huseyin},
     title = {Oscillation and {Periodicity} of a {Second} {Order} {Impulsive} {Delay} {Differential} {Equation} with a {Piecewise} {Constant} {Argument}},
     journal = {Communications in Mathematics},
     pages = {89--98},
     year = {2017},
     volume = {25},
     number = {2},
     mrnumber = {3745431},
     zbl = {1391.34105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a1/}
}
TY  - JOUR
AU  - Oztepe, Gizem S.
AU  - Karakoc, Fatma
AU  - Bereketoglu, Huseyin
TI  - Oscillation and Periodicity of a Second Order Impulsive Delay Differential Equation with a Piecewise Constant Argument
JO  - Communications in Mathematics
PY  - 2017
SP  - 89
EP  - 98
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a1/
LA  - en
ID  - COMIM_2017_25_2_a1
ER  - 
%0 Journal Article
%A Oztepe, Gizem S.
%A Karakoc, Fatma
%A Bereketoglu, Huseyin
%T Oscillation and Periodicity of a Second Order Impulsive Delay Differential Equation with a Piecewise Constant Argument
%J Communications in Mathematics
%D 2017
%P 89-98
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a1/
%G en
%F COMIM_2017_25_2_a1
Oztepe, Gizem S.; Karakoc, Fatma; Bereketoglu, Huseyin. Oscillation and Periodicity of a Second Order Impulsive Delay Differential Equation with a Piecewise Constant Argument. Communications in Mathematics, Tome 25 (2017) no. 2, pp. 89-98. http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a1/

[1] Akhmet, M.: Nonlinear hybrid continuous/discrete-time models. 2011, Springer Science & Business Media. | MR | Zbl

[2] Bereketoglu, H., Oztepe, G.S.: Convergence of the solution of an impulsive differential equation with piecewise constant arguments. Miskolc Math. Notes, 14, 2013, 801-815, | DOI | MR | Zbl

[3] Bereketoglu, H., Oztepe, G.S.: Asymptotic constancy for impulsive differential equations with piecewise constant argument. Bull. Math. Soc. Sci. Math. Roumanie Tome, 57, 2014, 181-192, | MR

[4] Bereketoglu, H., Seyhan, G., Ogun, A.: Advanced impulsive differential equations with piecewise constant arguments. Math. Model. Anal, 15, 2, 2010, 175-187, | DOI | MR | Zbl

[5] Bereketoglu, H., Seyhan, G., Karakoc, F.: On a second order differential equation with piecewise constant mixed arguments. Carpath. J. Math, 27, 1, 2011, 1-12, | MR | Zbl

[6] Busenberg, S., Cooke, K.: Vertically Transmitted Diseases, Models and Dynamics. Biomathematics, 23, 1993, Springer, Berlin, | MR | Zbl

[7] Chen, C.H., Li, H.X.: Almost automorphy for bounded solutions to second-order neutral differential equations with piecewise constant arguments. Elect. J. Diff. Eq., 140, 2013, 1-16, | MR | Zbl

[8] Gouzé, J.L., Sari, T.: A class of piecewise linear differential equations arising in biological models. Dynamic. Syst., 17, 4, 2002, 299-316, | DOI | MR | Zbl

[9] Karakoc, F., Bereketoglu, H., Seyhan, G.: Oscillatory and periodic solutions of impulsive differential equations with piecewise constant argument. Acta Appl. Math., 110, 1, 2010, 499-510, | DOI | MR | Zbl

[10] Küpper, T., Yuan, R.: On quasi-periodic solutions of differential equations with piecewise constant argument. J. Math. Anal. Appl., 267, 1, 2002, 173-193, | DOI | MR | Zbl

[11] Li, J., Shen, J.: Periodic boundary value problems of impulsive differential equations with piecewise constant argument. J. Nat. Sci. Hunan Norm. Univ., 25, 2002, 5-9, | MR | Zbl

[12] Li, H.X.: Almost periodic solutions of second-order neutral delay -- differential equations with piecewise constant arguments. J. Math. Anal. Appl., 298, 2, 2004, 693-709, | DOI | MR | Zbl

[13] Nieto, J.J., Lopez, R.R.: Green's function for second-order periodic boundary value problems with piecewise constant arguments. J. Math. Anal. Appl., 304, 1, 2005, 33-57, | DOI | MR | Zbl

[14] Oztepe, G.S., Bereketoglu, H.: Convergence in an impulsive advanced differential equations with piecewise constant argument. Bull. Math. Anal. Appl., 4, 2012, 57-70, | MR | Zbl

[15] Seifert, G.: Second order scalar functional differential equations with piecewise constant arguments. J. Difference Equ. Appl., 8, 5, 2002, 427-445, | MR | Zbl

[16] Wang, G.Q., Cheng, S.S.: Existence of periodic solutions for second order Rayleigh equations with piecewise constant argument. Turkish J. Math., 30, 1, 2006, 57-74, | MR | Zbl

[17] Wiener, J.: Generalized solutions of functional differential equations. 1993, Singapore, World Scientific, | Zbl

[18] Wiener, J., Lakshmikantham, V.: Excitability of a second-order delay differential equation. Nonlinear Anal., 38, 1, 1999, 1-11, | DOI | MR | Zbl

[19] Wiener, J., Lakshmikantham, V.: Differential equations with piecewise constant argument and impulsive equations. Nonlinear Studies, 7, 1, 2000, 60-69, | MR | Zbl

[20] Yuan, R.: Pseudo-almost periodic solutions of second-order neutral delay differential equations with piecewise constant argument. Nonlinear Anal., 41, 7, 2000, 871-890, | DOI | MR | Zbl