Existence of solutions for a coupled system with $\phi $-Laplacian operators and nonlinear coupled boundary conditions
Communications in Mathematics, Tome 25 (2017) no. 2, pp. 79-87
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the existence of solutions of the system $$ \begin {cases} (\phi _1(u_1'(t)))'= f_1(t,u_1(t),u_2(t),u'_1(t),u_2'(t)),\qquad \text {a.e. $t\in [0,T]$}, (\phi _2(u_2'(t)))'= f_2(t,u_1(t),u_2(t),u'_1(t),u_2'(t)),\qquad \text {a.e. $t\in [0,T]$}, \end {cases} $$ submitted to nonlinear coupled boundary conditions on $[0,T]$ where $\phi _1,\phi _2\colon (-a, a)\rightarrow \mathbb {R}$, with $0 a +\infty $, are two increasing homeomorphisms such that $\phi _1(0) = \phi _2(0) = 0$, and $f_i:[0,T]\times \mathbb {R}^{4}\rightarrow \mathbb {R}$, $i\in \{1,2\}$ are two $L^1$-Carathéodory functions. Using some new conditions and Schauder fixed point Theorem, we obtain solvability result.
We study the existence of solutions of the system $$ \begin {cases} (\phi _1(u_1'(t)))'= f_1(t,u_1(t),u_2(t),u'_1(t),u_2'(t)),\qquad \text {a.e. $t\in [0,T]$}, (\phi _2(u_2'(t)))'= f_2(t,u_1(t),u_2(t),u'_1(t),u_2'(t)),\qquad \text {a.e. $t\in [0,T]$}, \end {cases} $$ submitted to nonlinear coupled boundary conditions on $[0,T]$ where $\phi _1,\phi _2\colon (-a, a)\rightarrow \mathbb {R}$, with $0 a +\infty $, are two increasing homeomorphisms such that $\phi _1(0) = \phi _2(0) = 0$, and $f_i:[0,T]\times \mathbb {R}^{4}\rightarrow \mathbb {R}$, $i\in \{1,2\}$ are two $L^1$-Carathéodory functions. Using some new conditions and Schauder fixed point Theorem, we obtain solvability result.
Classification : 34B15
Keywords: $\phi $-Laplacian; $L^1$-Carath\'eodory function; Schauder fixed-point Theorem.
@article{COMIM_2017_25_2_a0,
     author = {Goli, Konan Charles Etienne and Adj\'e, Assohoun},
     title = {Existence of solutions for a coupled system with $\phi ${-Laplacian} operators and nonlinear coupled boundary conditions},
     journal = {Communications in Mathematics},
     pages = {79--87},
     year = {2017},
     volume = {25},
     number = {2},
     mrnumber = {3745430},
     zbl = {1391.34052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a0/}
}
TY  - JOUR
AU  - Goli, Konan Charles Etienne
AU  - Adjé, Assohoun
TI  - Existence of solutions for a coupled system with $\phi $-Laplacian operators and nonlinear coupled boundary conditions
JO  - Communications in Mathematics
PY  - 2017
SP  - 79
EP  - 87
VL  - 25
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a0/
LA  - en
ID  - COMIM_2017_25_2_a0
ER  - 
%0 Journal Article
%A Goli, Konan Charles Etienne
%A Adjé, Assohoun
%T Existence of solutions for a coupled system with $\phi $-Laplacian operators and nonlinear coupled boundary conditions
%J Communications in Mathematics
%D 2017
%P 79-87
%V 25
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a0/
%G en
%F COMIM_2017_25_2_a0
Goli, Konan Charles Etienne; Adjé, Assohoun. Existence of solutions for a coupled system with $\phi $-Laplacian operators and nonlinear coupled boundary conditions. Communications in Mathematics, Tome 25 (2017) no. 2, pp. 79-87. http://geodesic.mathdoc.fr/item/COMIM_2017_25_2_a0/

[1] Asif, N. A., Talib, I.: Existence of Solutions to a Second Order Coupled System with Nonlinear Coupled Boundary Conditions. American Journal of Applied Mathematics, Special Issue: Proceedings of the 1st UMT National Conference on Pure and Applied Mathematics (1st UNCPAM 2015), 3, 3-1, 2015, 54-59, | MR

[2] Asif, N. A., Talib, I., Tunc, C.: Existence of solution for first-order coupled system with nonlinear coupled boundary conditions. Boundary Value Problems, 2015, 1, 2015, 134, | MR | Zbl

[3] Bereanu, C., Mawhin, J.: Nonhomogeneous boundary value problems for some nonlinear equations with singular $\phi$-Laplacian. J. Math. Anal. Appl., 352, 2009, 218-233, | DOI | MR | Zbl

[4] Bergmann, P.G.: Introduction to the Theory of Relativity. 1976, Dover Publications, New York, | MR

[5] Brezis, H., Mawhin, J.: Periodic solutions of the forced relativistic pendulum. Differential Integral Equations, 23, 2010, 801-810, | MR | Zbl

[6] Franco, D., O'Regan, D.: Existence of solutions to second order problems with nonlinear boundary conditions. Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, 2002, 273-280, | MR

[7] Franco, D., O'Regan, D.: A new upper and lower solutions approach for second order problems with nonlinear boundary conditions. Arch. Inequal. Appl., 1, 2003, 423-430, | MR | Zbl

[8] Franco, D., O'Regan, D., Perán, J.: Fourth-order problems with nonlinear boundary conditions. Journal of Computational and Applied Mathematics, 174, 2005, 315-327. | DOI | MR | Zbl