@article{COMIM_2017_25_1_a5,
author = {Shangerganesh, Lingeshwaran and Gurusamy, Arumugam and Balachandran, Krishnan},
title = {Weak {Solutions} for {Nonlinear} {Parabolic} {Equations} with {Variable} {Exponents}},
journal = {Communications in Mathematics},
pages = {55--70},
year = {2017},
volume = {25},
number = {1},
mrnumber = {3667076},
zbl = {1391.35208},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a5/}
}
TY - JOUR AU - Shangerganesh, Lingeshwaran AU - Gurusamy, Arumugam AU - Balachandran, Krishnan TI - Weak Solutions for Nonlinear Parabolic Equations with Variable Exponents JO - Communications in Mathematics PY - 2017 SP - 55 EP - 70 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a5/ LA - en ID - COMIM_2017_25_1_a5 ER -
%0 Journal Article %A Shangerganesh, Lingeshwaran %A Gurusamy, Arumugam %A Balachandran, Krishnan %T Weak Solutions for Nonlinear Parabolic Equations with Variable Exponents %J Communications in Mathematics %D 2017 %P 55-70 %V 25 %N 1 %U http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a5/ %G en %F COMIM_2017_25_1_a5
Shangerganesh, Lingeshwaran; Gurusamy, Arumugam; Balachandran, Krishnan. Weak Solutions for Nonlinear Parabolic Equations with Variable Exponents. Communications in Mathematics, Tome 25 (2017) no. 1, pp. 55-70. http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a5/
[1] Andreianov, B., Bendahmane, M., Ouaro, S.: Structural stability for variable exponent elliptic problems, I: The $p(x)$-Laplacian kind problems. Nonlinear Anal., 73, 2010, 2-24, | DOI | MR | Zbl
[2] Ansini, L., Giacomelli, L.: Shear-thinning liquid films: macroscopic and asymptotic behavior by quasi-self-similar solutions. Nonlinearity, 15, 2002, 2147-2164, | DOI | MR
[3] Ansini, L., Giacomelli, L.: Doubly nonlinear thin-film equations in one space dimension. Arch. Ration. Mech. Anal., 173, 2004, 89-131, | DOI | MR | Zbl
[4] Antontsev, S.N., Shmarev, S.I.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal., 60, 2005, 515-545, | DOI | MR | Zbl
[5] Antontsev, S., Shmarev, S.: Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions. Handbook of Differential Equations: Stationary Partial Differential Equations, 3, 2006, 1-100, | Zbl
[6] Antontsev, S., Shmarev, S.: Parabolic equations with anisotropic nonstandard growth conditions. Internat. Ser. Numer. Math., 154, 2006, 33-44, | DOI | MR
[7] Antontsev, S., Shmarev, S.: Blow-up of solutions to parabolic equations with nonstandard growth conditions. J. Comput. Appl. Math., 234, 2010, 2633-2645, | DOI | MR | Zbl
[8] Antontsev, S., Shmarev, S.: Vanishing solutions of anisotropic parabolic equations with variable nonlinearity. J. Math. Anal. Appl., 361, 2010, 371-391, | DOI | MR | Zbl
[9] Bertsch, M., Giacomelli, L., Lorenzo, G., Karali, G.: Thin-film equations with Partial wetting energy: Existence of weak solutions. Physica D, 209, 2005, 17-27, | DOI | MR | Zbl
[10] Bhuvaneswari, V., Shangerganesh, L., Balachandran, K.: Weak solutions for $p$-Laplacian equation. Adv. Nonlinear Anal., 1, 2012, 319-334, | MR | Zbl
[11] Bowen, M., Hulshof, J., King, J. R.: Anomalous exponents and dipole solutions for the thin film equation. SIAM J. Appl. Math., 62, 2001, 149-179, | DOI | MR | Zbl
[12] Cahn, J. W., Hilliard, J. E.: Free energy of nonuniform system I. interfacial free energy. J. Chem. Phys., 28, 1958, 258-367, | DOI
[13] Calderon, C. P., Kwembe, T. A.: Dispersal models. Rev. Union Mat. Argentina, 37, 1991, 212-229, | MR | Zbl
[14] Chang, K.: Critical Point Theory and Its Applications. 1986, Shangai Sci. Tech. Press, Shangai, | MR | Zbl
[15] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math., 66, 2006, 1383-1406, | DOI | MR | Zbl
[16] Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev Spaces With Variable Exponents. 2011, Springer-Verlag, Heidelberg, | MR | Zbl
[17] Evans, L. C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. 1990, American Mathematical Society, Providence, RI, | MR | Zbl
[18] Gao, W., Guo, Z.: Existence and localization of weak solutions of nonlinear parabolic equations with variable exponent of nonlinearity. Ann. Mat. Pura Appl., 191, 2012, 551-562, | MR | Zbl
[19] Guo, Z., Liu, Q., Sun, J., Wu, B.: Reaction-diffusion systems with $p(x)$-growth for image denoising. Nonlinear Anal. RWA, 12, 2011, 2904-2918, | MR | Zbl
[20] King, J. R.: Two generalization of the thin film equation. Math. Comput. Modeling, 34, 2001, 737-756, | DOI | MR
[21] Lions, J.: Quelques Methodes de Resolution des Problems aux Limites Non lineaire. 1969, Dunod Editeur Gauthier Villars, Paris,
[22] Liu, C.: Some properties of solutions for the generalized thin film equation in one space dimension. Boletin de la Asociacion Matematica venezolana, 12, 2005, 43-52, | MR | Zbl
[23] Liu, C., Yin, J., Gao, H.: On the generalized thin film equation. Chin. Ann. Math., 25, 2004, 347-358, | DOI | MR
[24] Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. 1748, 2000, Springer-Verlag, Berlin, | MR | Zbl
[25] Xu, M., Zhou, S.: Existence and uniqueness of weak solutions for a generalized thin film equation. Nonlinear Anal., 60, 2005, 755-774, | DOI | MR | Zbl
[26] Xu, M., Zhou, S.: Stability and regularity of weak solutions for a generalized thin film equation. J. Math. Anal. Appl., 337, 2008, 49-60, | DOI | MR | Zbl
[27] Zang, A., Fu, Y.: Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Anal., 69, 2008, 3629-3636, | DOI | MR | Zbl
[28] Zhang, C., Zhou, S.: A fourth-order degenerate parabolic equation with variable exponent. J. Part. Diff. Eq., 2009, 1-16, | MR | Zbl
[29] Zhang, C., Zhou, S.: Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^1$ data. J. Differential Equations, 248, 2010, 1376-1400, | DOI | MR | Zbl
[30] Zhou, S.: A priori $L^{\infty}$-estimate and existence of weak solutions for some nonlinear parabolic equations. Nonlinear Anal., 42, 2000, 887-904, | DOI | MR