An approximation theorem for solutions of degenerate semilinear elliptic equations
Communications in Mathematics, Tome 25 (2017) no. 1, pp. 21-34 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main result establishes that a weak solution of degenerate semilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate semilinear elliptic equations.
The main result establishes that a weak solution of degenerate semilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate semilinear elliptic equations.
Classification : 35D30, 35J61, 35J70
Keywords: Degenerate semilinear elliptic equations; weighted Sobolev Spaces.
@article{COMIM_2017_25_1_a3,
     author = {Cavalheiro, Albo Carlos},
     title = {An approximation theorem for solutions of degenerate semilinear elliptic equations},
     journal = {Communications in Mathematics},
     pages = {21--34},
     year = {2017},
     volume = {25},
     number = {1},
     mrnumber = {3667074},
     zbl = {1391.35141},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a3/}
}
TY  - JOUR
AU  - Cavalheiro, Albo Carlos
TI  - An approximation theorem for solutions of degenerate semilinear elliptic equations
JO  - Communications in Mathematics
PY  - 2017
SP  - 21
EP  - 34
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a3/
LA  - en
ID  - COMIM_2017_25_1_a3
ER  - 
%0 Journal Article
%A Cavalheiro, Albo Carlos
%T An approximation theorem for solutions of degenerate semilinear elliptic equations
%J Communications in Mathematics
%D 2017
%P 21-34
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a3/
%G en
%F COMIM_2017_25_1_a3
Cavalheiro, Albo Carlos. An approximation theorem for solutions of degenerate semilinear elliptic equations. Communications in Mathematics, Tome 25 (2017) no. 1, pp. 21-34. http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a3/

[1] Cavalheiro, A. C.: An approximation theorem for solutions of degenerate elliptic equations. Proc. Edinb. Math. Soc., 45, 2002, 363-389, doi: 10.1017/S0013091500000079. | DOI | MR | Zbl

[2] Cavalheiro, A. C.: Existence of solutions in weighted Sobolev spaces for some degenerate semilinear elliptic equations. Appl. Math. Lett., 17, 2004, 387-391, doi:10.1016/S0893-9659(04)00043-6. | DOI | MR | Zbl

[3] Cavalheiro, A. C.: Existence results for the Dirichlet problem of some degenerate nonlinear elliptic equations. J. Appl. Anal., 20, 2, 2014, 145-154, doi:10.1515/jaa-2014-0016. | DOI | MR | Zbl

[4] Cavalheiro, A. C.: Uniqueness of solutions for some degenerate nonlinear elliptic equations. Appl. Math. (Warsaw), 41, 1, 2014, 93-106, | DOI | MR | Zbl

[5] Cavalheiro, A. C.: Existence and uniqueness of solutions for the Navier problems with degenerate nonlinear elliptic equations. Note Mat., 25, 2, 2015, 1-16, | MR

[6] Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations, 7, 1982, 77-116, doi:10.1080/03605308208820218. | DOI | MR | Zbl

[7] Fernandes, J. C., Franchi, B.: Existence and properties of the Green function for a class of degenerate parabolic equations. Rev. Mat. Iberoam., 12, 1996, 491-525, | DOI | MR | Zbl

[8] Garcia-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, 116, 1985, | MR

[9] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. 1993, Oxford Math. Monographs, Clarendon Press, | MR | Zbl

[10] Kufner, A.: Weighted Sobolev Spaces. 1985, John Wiley & Sons, New York, | MR | Zbl

[11] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 165, 1972, 207-226, | DOI | MR | Zbl

[12] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. 1986, Academic Press, San Diego, | MR | Zbl

[13] Turesson, B. O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. 1736, 2000, Springer-Verlag, Lecture Notes in Math.. | DOI | MR | Zbl