Keywords: Quasi-linear elliptic problem; $(p, q)$-Laplacian operator; Critical Sobolev-Hardy exponent; Starshaped domain.
@article{COMIM_2017_25_1_a2,
author = {Shahrokhi-Dehkordi, M.S.},
title = {On a class of $(p,q)${-Laplacian} problems involving the critical {Sobolev-Hardy} exponents in starshaped domain},
journal = {Communications in Mathematics},
pages = {13--20},
year = {2017},
volume = {25},
number = {1},
mrnumber = {3667073},
zbl = {1391.35170},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a2/}
}
TY - JOUR AU - Shahrokhi-Dehkordi, M.S. TI - On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain JO - Communications in Mathematics PY - 2017 SP - 13 EP - 20 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a2/ LA - en ID - COMIM_2017_25_1_a2 ER -
%0 Journal Article %A Shahrokhi-Dehkordi, M.S. %T On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain %J Communications in Mathematics %D 2017 %P 13-20 %V 25 %N 1 %U http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a2/ %G en %F COMIM_2017_25_1_a2
Shahrokhi-Dehkordi, M.S. On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain. Communications in Mathematics, Tome 25 (2017) no. 1, pp. 13-20. http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a2/
[1] Benci, V., Cerami, G.: Existence of positive solutions of the equation $-\Delta u+a(x)u=u^{(N+2)/(N-2)}$ in $\mathbb{R}^N$. J. Funct. Anal., 88, 1990, 91-117, | MR
[2] Benci, V., D'Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derrick's problem and infinitely many solutions. Arch. Ration. Mech. Anal., 154, 4, 2000, 297-324, | DOI | MR | Zbl
[3] Benci, V., Micheletti, A. M., Visetti, D.: An eigenvalue problem for a quasilinear elliptic field equation. J. Differ. Equ., 184, 2, 2002, 299-320, | DOI | MR | Zbl
[4] Candito, P., Marano, S. A., Perera, K.: On a class of critical $(p, q)$-Laplacian problems. Nonlinear Differ. Equ. Appl., 22, 2015, 1959-1972, | DOI | MR | Zbl
[5] Cherfils, L., Iĺyasov, Y.: On the stationary solutions of generalized reaction diffusion equations with $p\&q$-Laplacian. Commun. Pure Appl. Anal., 4, 1, 2005, 9-22, | MR | Zbl
[6] Derrick, G. H.: Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys., 5, 1964, 1252-1254, | DOI | MR
[7] Fife, P. C.: Mathematical aspects of reacting and diffusing systems. Lecture Notes in Biomathematics, 28, 1979, Springer, Berlin, | DOI | MR | Zbl
[8] Figueiredo, G. M.: Existence of positive solutions for a class of $p\&q$ elliptic problems with critical growth on $\mathbb{R}^n$. J. Math. Anal. Appl., 378, 2011, 507-518, | DOI | MR
[9] Filippucci, R., Pucci, P., Robert, F.: On a $p$-Laplace equation with multiple critical nonlinearitie. J. Math. Pures Appl, 91, 2009, 156-177, | DOI | MR
[10] Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Amer. Math. Soc., 352, 2000, 5703-5743, | DOI | MR | Zbl
[11] Guedda, M., Véron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal., 13, 1989, 879-902, | DOI | MR | Zbl
[12] Guo, Q., Han, J., Niu, P.: Existence and multiplicity of solutions for critical elliptic equations with multi-polar potentials in symmetric domains. Nonlinear Analysis, 75, 2012, 5765-5786, | DOI | MR | Zbl
[13] Kang, D.: Solutions of the quasilinear elliptic problem with a critical Sobolev-Hardy exponent and a Hardy-type term. J. Math. Anal. Appl., 341, 2008, 764-782, | DOI | MR | Zbl
[14] Li, G. B., Liang, X.: The existence of nontrivial solutions to nonlinear elliptic equation of $p-q$-Laplacian type on $\mathbb{R}^N$. Nonlinear Anal., 71, 2009, 2316-2334, | DOI | MR
[15] Li, Y., Ruf, B., Guo, Q., Niu, P.: Quasilinear elliptic problems with combined critical Sobolev-Hardy terms. Annali di Matematica, 192, 2013, 93-113, | DOI | MR | Zbl
[16] López, R.: Constant Mean Curvature Surfaces with Boundary. 2013, Springer Monographs in Mathematics, | MR | Zbl
[17] Marano, S. A., Papageorgiou, N. S.: Constant-sign and nodal solutions of coercive $(p,q)$-Laplacian problems. Nonlinear Anal., 77, 2013, 118-129, | DOI | MR | Zbl
[18] Shahrokhi-Dehkordi, M. S., Taheri, A.: Quasiconvexity and uniqueness of stationary points on a space of measure preserving maps. Journal of Convex Analysis, 17, 1, 2010, 69-79, | MR | Zbl
[19] Sun, M.: Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance. J. Math. Anal. Appl., 386, 2, 2012, 661-668, | DOI | MR | Zbl
[20] Wilhelmsson, H.: Explosive instabilities of reaction-diffusion equations. Phys. Rev. A, 36, 2, 1987, 965-966, | DOI | MR
[21] Yin, H., Yang, Z.: A class of $p-q$-Laplacian type equation with concave-convex nonlinearities in bounded domain. J. Math. Anal. Appl., 382, 2011, 843-855, | DOI | MR | Zbl