On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain
Communications in Mathematics, Tome 25 (2017) no. 1, pp. 13-20
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\Omega \subset \mathbb{R}^n$ be a bounded starshaped domain and consider the $(p,q)$-Laplacian problem \begin{align*} -\Delta_p u-\Delta_q u = \lambda ({\bf x} )\lvert u\rvert^{p^\star -2} u+\mu |u|^{r-2} u \end{align*} where $\mu$ is a positive parameter, $1 q \le p n$, $r\ge p^{\star}$ and $p^{\star}:=\frac{np}{n-p}$ is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the $(p, q)$-Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.
Let $\Omega \subset \mathbb{R}^n$ be a bounded starshaped domain and consider the $(p,q)$-Laplacian problem \begin{align*} -\Delta_p u-\Delta_q u = \lambda ({\bf x} )\lvert u\rvert^{p^\star -2} u+\mu |u|^{r-2} u \end{align*} where $\mu$ is a positive parameter, $1 q \le p n$, $r\ge p^{\star}$ and $p^{\star}:=\frac{np}{n-p}$ is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the $(p, q)$-Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.
Classification : 35B33, 35J20, 35J92, 58E05
Keywords: Quasi-linear elliptic problem; $(p, q)$-Laplacian operator; Critical Sobolev-Hardy exponent; Starshaped domain.
@article{COMIM_2017_25_1_a2,
     author = {Shahrokhi-Dehkordi, M.S.},
     title = {On a class of $(p,q)${-Laplacian} problems involving the critical {Sobolev-Hardy} exponents in starshaped domain},
     journal = {Communications in Mathematics},
     pages = {13--20},
     year = {2017},
     volume = {25},
     number = {1},
     mrnumber = {3667073},
     zbl = {1391.35170},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a2/}
}
TY  - JOUR
AU  - Shahrokhi-Dehkordi, M.S.
TI  - On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain
JO  - Communications in Mathematics
PY  - 2017
SP  - 13
EP  - 20
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a2/
LA  - en
ID  - COMIM_2017_25_1_a2
ER  - 
%0 Journal Article
%A Shahrokhi-Dehkordi, M.S.
%T On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain
%J Communications in Mathematics
%D 2017
%P 13-20
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a2/
%G en
%F COMIM_2017_25_1_a2
Shahrokhi-Dehkordi, M.S. On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain. Communications in Mathematics, Tome 25 (2017) no. 1, pp. 13-20. http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a2/

[1] Benci, V., Cerami, G.: Existence of positive solutions of the equation $-\Delta u+a(x)u=u^{(N+2)/(N-2)}$ in $\mathbb{R}^N$. J. Funct. Anal., 88, 1990, 91-117, | MR

[2] Benci, V., D'Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derrick's problem and infinitely many solutions. Arch. Ration. Mech. Anal., 154, 4, 2000, 297-324, | DOI | MR | Zbl

[3] Benci, V., Micheletti, A. M., Visetti, D.: An eigenvalue problem for a quasilinear elliptic field equation. J. Differ. Equ., 184, 2, 2002, 299-320, | DOI | MR | Zbl

[4] Candito, P., Marano, S. A., Perera, K.: On a class of critical $(p, q)$-Laplacian problems. Nonlinear Differ. Equ. Appl., 22, 2015, 1959-1972, | DOI | MR | Zbl

[5] Cherfils, L., Iĺyasov, Y.: On the stationary solutions of generalized reaction diffusion equations with $p\&q$-Laplacian. Commun. Pure Appl. Anal., 4, 1, 2005, 9-22, | MR | Zbl

[6] Derrick, G. H.: Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys., 5, 1964, 1252-1254, | DOI | MR

[7] Fife, P. C.: Mathematical aspects of reacting and diffusing systems. Lecture Notes in Biomathematics, 28, 1979, Springer, Berlin, | DOI | MR | Zbl

[8] Figueiredo, G. M.: Existence of positive solutions for a class of $p\&q$ elliptic problems with critical growth on $\mathbb{R}^n$. J. Math. Anal. Appl., 378, 2011, 507-518, | DOI | MR

[9] Filippucci, R., Pucci, P., Robert, F.: On a $p$-Laplace equation with multiple critical nonlinearitie. J. Math. Pures Appl, 91, 2009, 156-177, | DOI | MR

[10] Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Amer. Math. Soc., 352, 2000, 5703-5743, | DOI | MR | Zbl

[11] Guedda, M., Véron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal., 13, 1989, 879-902, | DOI | MR | Zbl

[12] Guo, Q., Han, J., Niu, P.: Existence and multiplicity of solutions for critical elliptic equations with multi-polar potentials in symmetric domains. Nonlinear Analysis, 75, 2012, 5765-5786, | DOI | MR | Zbl

[13] Kang, D.: Solutions of the quasilinear elliptic problem with a critical Sobolev-Hardy exponent and a Hardy-type term. J. Math. Anal. Appl., 341, 2008, 764-782, | DOI | MR | Zbl

[14] Li, G. B., Liang, X.: The existence of nontrivial solutions to nonlinear elliptic equation of $p-q$-Laplacian type on $\mathbb{R}^N$. Nonlinear Anal., 71, 2009, 2316-2334, | DOI | MR

[15] Li, Y., Ruf, B., Guo, Q., Niu, P.: Quasilinear elliptic problems with combined critical Sobolev-Hardy terms. Annali di Matematica, 192, 2013, 93-113, | DOI | MR | Zbl

[16] López, R.: Constant Mean Curvature Surfaces with Boundary. 2013, Springer Monographs in Mathematics, | MR | Zbl

[17] Marano, S. A., Papageorgiou, N. S.: Constant-sign and nodal solutions of coercive $(p,q)$-Laplacian problems. Nonlinear Anal., 77, 2013, 118-129, | DOI | MR | Zbl

[18] Shahrokhi-Dehkordi, M. S., Taheri, A.: Quasiconvexity and uniqueness of stationary points on a space of measure preserving maps. Journal of Convex Analysis, 17, 1, 2010, 69-79, | MR | Zbl

[19] Sun, M.: Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance. J. Math. Anal. Appl., 386, 2, 2012, 661-668, | DOI | MR | Zbl

[20] Wilhelmsson, H.: Explosive instabilities of reaction-diffusion equations. Phys. Rev. A, 36, 2, 1987, 965-966, | DOI | MR

[21] Yin, H., Yang, Z.: A class of $p-q$-Laplacian type equation with concave-convex nonlinearities in bounded domain. J. Math. Anal. Appl., 382, 2011, 843-855, | DOI | MR | Zbl