Keywords: Geometry of numbers; Diophantine approximation; approximation constants; critical determinant
@article{COMIM_2017_25_1_a1,
author = {Nowak, Werner Georg},
title = {On the critical determinants of certain star bodies},
journal = {Communications in Mathematics},
pages = {5--11},
year = {2017},
volume = {25},
number = {1},
mrnumber = {3667072},
zbl = {06888084},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a1/}
}
Nowak, Werner Georg. On the critical determinants of certain star bodies. Communications in Mathematics, Tome 25 (2017) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a1/
[1] Blichfeldt, H.: A new principle in the geometry of numbers, with some applications. Trans. Amer. Math. Soc., 15, 1914, 227-235, | DOI | MR
[2] Cassels, J.W.S.: Simultaneous Diophantine approximation. J. London Math. Soc., 30, 1955, 119-121, | DOI | MR | Zbl
[3] Davenport, H.: Simultaneous Diophantine approximation. Proc. London Math. Soc., 3, 2, 1952, 406-416, | MR | Zbl
[4] Davenport, H.: On a theorem of Furtwängler. J. London Math. Soc., 30, 1955, 185-195, | MR | Zbl
[5] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers. 1987, North Holland, Amsterdam, | MR | Zbl
[6] Mack, J.M.: Simultaneous Diophantine approximation. J. Austral. Math. Soc., Ser. A, 24, 1977, 266-285, | DOI | MR | Zbl
[7] Mullender, P.: Lattice points in non-convex regions I. Proc. Kon. Ned. Akad. Wet., 51, 1948, 874-884, | MR | Zbl
[8] Mullender, P.: Simultaneous approximation. Ann. Math., 52, 1950, 417-426, | DOI | MR | Zbl
[9] Niven, I., Zuckerman, H.S.: Einführung in die Zahlentheorie. 1975, Bibliograph. Inst., Mannheim, | MR
[10] Nowak, W.G.: A note on simultaneous Diophantine approximation. Manuscr. math., 36, 1981, 33-46, | DOI | MR | Zbl
[11] Nowak, W.G.: The critical determinant of the double paraboloid and Diophantine approximation in $\mathbb{R}^3$ and $\mathbb{R}^4$. Math. Pannonica, 10, 1999, 111-122, | MR
[12] Nowak, W.G.: Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem. T.M. Rassias and P.M. Pardalos (eds.), Essays in mathematics and its applications, 2016, 181-197, Springer, Switzerland, | MR
[13] Spohn, W.G.: Midpoint regions and simultaneous Diophantine approximation. Dissertation, Ann Arbor, Michigan, University Microfilms, Inc., Order No. 62-4343, (1962). | MR
[14] Spohn, W.G.: Blichfeldt's theorem and simultaneous Diophantine approximation. Amer. J. Math., 90, 1968, 885-894, | DOI | MR