On the critical determinants of certain star bodies
Communications in Mathematics, Tome 25 (2017) no. 1, pp. 5-11 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In a classic paper, W.G. Spohn established the to-date sharpest estimates from below for the simultaneous Diophantine approximation constants for three and more real numbers. As a by-result of his method which used Blichfeldt's Theorem and the calculus of variations, he derived a bound for the critical determinant of the star body $$ \lvert x_1\rvert ({\lvert x_1\rvert^3+\lvert x_2\rvert^3+\lvert x_3\rvert^3})\le 1\,.$$ In this little note, after a brief exposition of the basics of the geometry of numbers and its significance for Diophantine approximation, this latter result is improved and extended to the star body $$ \lvert x_1\rvert (\lvert x_1\rvert^3+(x_2^2+x_3^2)^{3/2})\le 1\,. $$
In a classic paper, W.G. Spohn established the to-date sharpest estimates from below for the simultaneous Diophantine approximation constants for three and more real numbers. As a by-result of his method which used Blichfeldt's Theorem and the calculus of variations, he derived a bound for the critical determinant of the star body $$ \lvert x_1\rvert ({\lvert x_1\rvert^3+\lvert x_2\rvert^3+\lvert x_3\rvert^3})\le 1\,.$$ In this little note, after a brief exposition of the basics of the geometry of numbers and its significance for Diophantine approximation, this latter result is improved and extended to the star body $$ \lvert x_1\rvert (\lvert x_1\rvert^3+(x_2^2+x_3^2)^{3/2})\le 1\,. $$
Classification : 11H16, 11J13
Keywords: Geometry of numbers; Diophantine approximation; approximation constants; critical determinant
@article{COMIM_2017_25_1_a1,
     author = {Nowak, Werner Georg},
     title = {On the critical determinants of certain star bodies},
     journal = {Communications in Mathematics},
     pages = {5--11},
     year = {2017},
     volume = {25},
     number = {1},
     mrnumber = {3667072},
     zbl = {06888084},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a1/}
}
TY  - JOUR
AU  - Nowak, Werner Georg
TI  - On the critical determinants of certain star bodies
JO  - Communications in Mathematics
PY  - 2017
SP  - 5
EP  - 11
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a1/
LA  - en
ID  - COMIM_2017_25_1_a1
ER  - 
%0 Journal Article
%A Nowak, Werner Georg
%T On the critical determinants of certain star bodies
%J Communications in Mathematics
%D 2017
%P 5-11
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a1/
%G en
%F COMIM_2017_25_1_a1
Nowak, Werner Georg. On the critical determinants of certain star bodies. Communications in Mathematics, Tome 25 (2017) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a1/

[1] Blichfeldt, H.: A new principle in the geometry of numbers, with some applications. Trans. Amer. Math. Soc., 15, 1914, 227-235, | DOI | MR

[2] Cassels, J.W.S.: Simultaneous Diophantine approximation. J. London Math. Soc., 30, 1955, 119-121, | DOI | MR | Zbl

[3] Davenport, H.: Simultaneous Diophantine approximation. Proc. London Math. Soc., 3, 2, 1952, 406-416, | MR | Zbl

[4] Davenport, H.: On a theorem of Furtwängler. J. London Math. Soc., 30, 1955, 185-195, | MR | Zbl

[5] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers. 1987, North Holland, Amsterdam, | MR | Zbl

[6] Mack, J.M.: Simultaneous Diophantine approximation. J. Austral. Math. Soc., Ser. A, 24, 1977, 266-285, | DOI | MR | Zbl

[7] Mullender, P.: Lattice points in non-convex regions I. Proc. Kon. Ned. Akad. Wet., 51, 1948, 874-884, | MR | Zbl

[8] Mullender, P.: Simultaneous approximation. Ann. Math., 52, 1950, 417-426, | DOI | MR | Zbl

[9] Niven, I., Zuckerman, H.S.: Einführung in die Zahlentheorie. 1975, Bibliograph. Inst., Mannheim, | MR

[10] Nowak, W.G.: A note on simultaneous Diophantine approximation. Manuscr. math., 36, 1981, 33-46, | DOI | MR | Zbl

[11] Nowak, W.G.: The critical determinant of the double paraboloid and Diophantine approximation in $\mathbb{R}^3$ and $\mathbb{R}^4$. Math. Pannonica, 10, 1999, 111-122, | MR

[12] Nowak, W.G.: Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem. T.M. Rassias and P.M. Pardalos (eds.), Essays in mathematics and its applications, 2016, 181-197, Springer, Switzerland, | MR

[13] Spohn, W.G.: Midpoint regions and simultaneous Diophantine approximation. Dissertation, Ann Arbor, Michigan, University Microfilms, Inc., Order No. 62-4343, (1962). | MR

[14] Spohn, W.G.: Blichfeldt's theorem and simultaneous Diophantine approximation. Amer. J. Math., 90, 1968, 885-894, | DOI | MR