@article{COMIM_2017_25_1_a0,
author = {Marques, Diego and Silva, Elaine},
title = {A {Note} on {Transcendental} {Power} {Series} {Mapping} the {Set} of {Rational} {Numbers} into {Itself}},
journal = {Communications in Mathematics},
pages = {1--4},
year = {2017},
volume = {25},
number = {1},
mrnumber = {3667071},
zbl = {06888083},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a0/}
}
TY - JOUR AU - Marques, Diego AU - Silva, Elaine TI - A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself JO - Communications in Mathematics PY - 2017 SP - 1 EP - 4 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a0/ LA - en ID - COMIM_2017_25_1_a0 ER -
Marques, Diego; Silva, Elaine. A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself. Communications in Mathematics, Tome 25 (2017) no. 1, pp. 1-4. http://geodesic.mathdoc.fr/item/COMIM_2017_25_1_a0/
[1] Mahler, K.: Arithmetic properties of lacunary power series with integral coefficients. J. Austral. Math. Soc., 5, 1965, 56-64, | DOI | MR | Zbl
[2] Mahler, K.: Some suggestions for further research. Bull. Austral. Math. Soc., 29, 1984, 101-108, | DOI | MR | Zbl
[3] Maillet, E.: Introduction à la Théorie des Nombres Transcendants et des Propriétés Arithmétiques des Fonctions. 1906, Gauthier-Villars, Paris,
[4] Marques, D., Moreira, C.G.: A variant of a question proposed by K. Mahler concerning Liouville numbers. Bull. Austral. Math. Soc., 91, 2015, 29-33, | DOI | MR | Zbl
[5] Marques, D., Ramirez, J.: On transcendental analytic functions mapping an uncountable class of $U$-numbers into Liouville numbers. Proc. Japan Acad. Ser. A Math. Sci., 91, 2015, 25-28, | DOI | MR | Zbl
[6] Marques, D., Ramirez, J., Silva, E.: A note on lacunary power series with rational coefficients. Bull. Austral. Math. Soc., 93, 2015, 1-3, | MR
[7] Marques, D., Schleischitz, J.: On a problem posed by Mahler. J. Austral. Math. Soc., 100, 2016, 86-107, | DOI | MR | Zbl