Keywords: fibred manifolds; calculus of variations; equations of motion; inverse problem; symmetries; conservation laws; variational physical theories
@article{COMIM_2016_24_2_a6,
author = {Musilov\'a, Jana and Hronek, Stanislav},
title = {The calculus of variations on jet bundles as a universal approach for a variational formulation of fundamental physical theories},
journal = {Communications in Mathematics},
pages = {173--193},
year = {2016},
volume = {24},
number = {2},
mrnumber = {3590213},
zbl = {06697289},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a6/}
}
TY - JOUR AU - Musilová, Jana AU - Hronek, Stanislav TI - The calculus of variations on jet bundles as a universal approach for a variational formulation of fundamental physical theories JO - Communications in Mathematics PY - 2016 SP - 173 EP - 193 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a6/ LA - en ID - COMIM_2016_24_2_a6 ER -
%0 Journal Article %A Musilová, Jana %A Hronek, Stanislav %T The calculus of variations on jet bundles as a universal approach for a variational formulation of fundamental physical theories %J Communications in Mathematics %D 2016 %P 173-193 %V 24 %N 2 %U http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a6/ %G en %F COMIM_2016_24_2_a6
Musilová, Jana; Hronek, Stanislav. The calculus of variations on jet bundles as a universal approach for a variational formulation of fundamental physical theories. Communications in Mathematics, Tome 24 (2016) no. 2, pp. 173-193. http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a6/
[1] Anderson, I. M.: The Variational Bicomplex. 1989, Book preprint, technical report of the Utah State University.
[2] Rodrigues, M. de León,P. R.: Generalized Classical Mechanics and Field Theory. 1985, North-Holland, Amsterdam, | MR | Zbl
[3] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: New Lagrangian and Hamiltonian Methods in Field Theory. 1997, World Scientific, Singapore, | MR | Zbl
[4] Krasilschik, I. S., Vinogradov, V. V. Lychagin,A. M.: Geometry of Jet Spaces and Differential Equations. 1986, Gordon and Breach,
[5] Krbek, M., Musilov?, J.: Representation of the variational sequence by differential forms. Acta Appl. Math., 88, 2, 2005, 177-199, | DOI | MR
[6] Krupka, D.: Introduction to Global Variational Geometry. Atlantis Studies in Variational Geometry, 2015, Atlantis Press, | MR | Zbl
[7] Krupka, D., Musilov?, J.: Trivial lagrangians in field theory. Differential Geometry and its Applications, 9, 1998, 293-305, | DOI | MR
[8] Krupkov?, O.: The Geometry of Ordinary Differential Equations. Lecture Notes in Mathematics, 1678, 1997, Springer-Verlag, Berlin, Heidelberg, | DOI | MR
[9] Landau, L. D., Lifshitz, E. M.: Quantum Mechanics: Non-Relativistic Theory. 3, 1977, Pergamon Press, 3rd ed.. | MR
[10] Landau, L. D., Lifshitz, E. M.: he Classical Theory of Fields. 2, 1975, Pergamon Press, 3rd ed.. | MR
[11] Palese, M., Rossi, O., Winterroth, E., Musilov?, J.: Variational Sequences, Representation Sequences and Applications in Physics. SIGMA, 12, 2016, 1-44, | MR
[12] Rossi, O., Musilov?, J.: The relativistic mechanics in a nonholonomic setting: a unified approach to particles with non-zero mass and massless particles. J. Phys. A: Math. Theor., 45, 2012, 255202, 27 pp.. | DOI | MR
[13] Sardanashvily, G.: Noether's Theorems, Applications in Mechanics and Field Theory. 2016, Atlantis Studies in Variational Geometry, Atlantis Press, | MR | Zbl
[14] Saunders, D. J.: The Geometry of Jet Bundles. 1989, Cambridge University Press, Cambridge, | MR | Zbl