Keywords: Global Analysis; Calculus of Variations; Free Boundary Problems; Jet Spaces; Bernoulli Beam
@article{COMIM_2016_24_2_a5,
author = {Moreno, Giovanni and Stypa, Monika Ewa},
title = {Geometry of the free-sliding {Bernoulli} beam},
journal = {Communications in Mathematics},
pages = {153--171},
year = {2016},
volume = {24},
number = {2},
mrnumber = {3590212},
zbl = {06697288},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a5/}
}
Moreno, Giovanni; Stypa, Monika Ewa. Geometry of the free-sliding Bernoulli beam. Communications in Mathematics, Tome 24 (2016) no. 2, pp. 153-171. http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a5/
[1] Duchamp, I. M. Anderson and T.: On the existence of global variational principles. Amer. J. Math., 102, 5, 1980, 781-868, ISSN 0002-9327. DOI 10.2307/2374195. | DOI | MR
[2] Bocharov, A. V., Chetverikov, V. N., Duzhin, S. V., Khor'kova, N. G., Krasil'shchik, I. S., Samokhin, A. V., Torkhov, Yu. N., Verbovetsky, A. M., Vinogradov, A. M.: Symmetries and conservation laws for differential equations of mathematical physics. Translations of Mathematical Monographs, 182, 1999, American Mathematical Society, Providence, RI, ISBN 0-8218-0958-X. Edited and with a preface by Krasil'shchik and Vinogradov, translated from 1997 Russian original by Verbovetsky and Krasil'shchik. | MR
[3] Dedecker, P.: Calcul des variations, formes différentielles et champs géodésiques. Géométrie différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, 17-34, Centre National de la Recherche Scientifique, Paris, | MR | Zbl
[4] Gel'fand, I. M., Dikiĭ, L. A.: The calculus of jets and nonlinear Hamiltonian systems. Funkcional. Anal. i Priložen., 12, 2, 1978, 8-23, ISSN 0374-1990. | MR
[5] Giaquinta, M., Hildebrandt, S.: Calculus of variations. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 310, 1996, Springer-Verlag, Berlin, ISBN 3-540-50625-X. The Lagrangian formalism. | MR
[6] Janet, M.: Leçons sur les Systèmes d'Équations aux Dérivées Partielles. 1929, Gauthier-Villars,
[7] Krupka, D.: Of the structure of the Euler mapping. Arch. Math., 10, 1, 1974, 55-61, ISSN 0044-8753. | MR
[8] Krupka, D., Moreno, G., Urban, Z., Voln{á}, J.: On a bicomplex induced by the variational sequence. Int. J. Geom. Methods Mod. Phys., 15, 5, 2015, 1550057. ISSN 0219-8878. DOI 10.1142/S0219887815500577. | DOI | MR | Zbl
[9] Lánczos, C.: The variational principles of mechanics. 4, 1970, University of Toronto Press, Toronto, Ont., Fourth Ed.. | MR | Zbl
[10] Love, A. E. H.: A treatise on the Mathematical Theory of Elasticity. 1944, Dover Publications, New York, Fourth Ed.. | MR | Zbl
[11] Moreno, G.: Condizioni di trasversalitá nel calcolo secondario. 2007, PhD thesis, University of Naples ``Federico II'' (2007).
[12] Moreno, G.: A C-spectral sequence associated with free boundary variational problems. Geometry, integrability and quantization, 2010, 146-156, Avangard Prima, Sofia, | MR
[13] Moreno, G.: The geometry of the space of cauchy data of nonlinear pdes. Central European Journal of Mathematics, 11, 11, 2013, 1960-1981, DOI 10.2478/s11533-013-0292-y. | DOI | MR | Zbl
[14] Moreno, G., Stypa, M. E.: Natural boundary conditions in geometric calculus of variations. Math. Slovaca, 65, 6, 2015, 1531-1556, ISSN 0139-9918. DOI 10.1515/ms-2015-0105. | DOI | MR
[15] Sardanashvily, G. A.: Gauge theory in jet manifolds. 1993, Hadronic Press Inc., Palm Harbor, FL, ISBN 0-911767-60-6.. | MR | Zbl
[16] Saunders, D. J.: The geometry of jet bundles. 142, 1989, Cambridge University Press, Cambridge, ISBN 0-521-36948-7. DOI 10.1017/CBO9780511526411. | DOI | MR | Zbl
[17] Takens, F.: Symmetries, conservation laws and variational principles. Lect. Notes Math., 597, 1977, 581-604, Springer-Verlag, | DOI | MR | Zbl
[18] Tsujishita, T.: On variation bicomplexes associated to differential equations. Osaka J. Math., 19, 2, 1982, 311-363, ISSN 0030-6126. | MR | Zbl
[19] Tulczyjew, W. M.: Sur la différentielle de Lagrange. C. R. Acad. Sci. Paris Sér. A, 280, 1975, 1295-1298, | MR | Zbl
[20] Brunt, B. van: The calculus of variations. 2004, Springer-Verlag, New York, ISBN 0-387-40247-0. | MR
[21] Vinogradov, A. M.: The C-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory. J. Math. Anal. Appl., 100, 1, 1984, 1-40, ISSN 0022-247X. | DOI | MR
[22] Vinogradov, A. M.: The C-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory. J. Math. Anal. Appl., 100, 1, 1984, 41-129, ISSN 0022-247X. | DOI | MR
[23] Vinogradov, A. M., Moreno, G.: Domains in infinite jet spaces: the C-spectral sequence. Dokl. Akad. Nauk, 413, 2, 2007, 154-157, ISSN 0869-5652. DOI 10.1134/S1064562407020081. | DOI | MR