Keywords: Variational principles; Symmetries; Conserved quantities; Noether theorem; Fiber bundles; Multisymplectic manifolds.
@article{COMIM_2016_24_2_a4,
author = {Gaset, Jordi and Prieto-Mart{\'\i}nez, Pedro D. and Rom\'an-Roy, Narciso},
title = {Variational principles and symmetries on fibered multisymplectic manifolds},
journal = {Communications in Mathematics},
pages = {137--152},
year = {2016},
volume = {24},
number = {2},
mrnumber = {3590211},
zbl = {06697287},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a4/}
}
TY - JOUR AU - Gaset, Jordi AU - Prieto-Martínez, Pedro D. AU - Román-Roy, Narciso TI - Variational principles and symmetries on fibered multisymplectic manifolds JO - Communications in Mathematics PY - 2016 SP - 137 EP - 152 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a4/ LA - en ID - COMIM_2016_24_2_a4 ER -
%0 Journal Article %A Gaset, Jordi %A Prieto-Martínez, Pedro D. %A Román-Roy, Narciso %T Variational principles and symmetries on fibered multisymplectic manifolds %J Communications in Mathematics %D 2016 %P 137-152 %V 24 %N 2 %U http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a4/ %G en %F COMIM_2016_24_2_a4
Gaset, Jordi; Prieto-Martínez, Pedro D.; Román-Roy, Narciso. Variational principles and symmetries on fibered multisymplectic manifolds. Communications in Mathematics, Tome 24 (2016) no. 2, pp. 137-152. http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a4/
[1] Aldaya, V., Azcarraga, J. A. de: Variational Principles on $r-th$ order jets of fibre bundles in Field Theory. J. Math. Phys., 19, 9, 1978, 1869-1875, | DOI | MR
[2] Aldaya, V., Azcarraga, J.A. de: Higher order Hamiltonian formalism in Field Theory. J. Phys. A, 13, 8, 1980, 2545-2551, | MR | Zbl
[3] Arnold, V. I.: Mathematical methods of classical mechanics. 60, 1989, Springer-Verlag, New York, | MR | Zbl
[4] Dedecker, P.: On the generalization of symplectic geometry to multiple integrals in the calculus of variations. Differential Geometrical Methods in Mathematical Physics, 570, 1977, 395-456, Springer, Berlin, | MR | Zbl
[5] León, M. de, Marín-Solano, J., Marrero, J. C., Muñoz-Lecanda, M. C., Román-Roy, N.: Pre-multisymplectic constraint algorithm for field theories. Int. J. Geom. Meth. Mod. Phys., 2, 2005, 839-871, | DOI | MR | Zbl
[6] León, M. de, Diego, D. Martín de: Symmetries and Constant of the Motion for Singular Lagrangian Systems. Int. J. Theor. Phys., 35, 5, 1996, 975-1011, | DOI | MR
[7] León, M. de, Diego, D. Martín de, Santamaría-Merino, A.: Symmetries in classical field theory. Int. J. Geom. Meths. Mod. Phys., 1, 5, 2004, 651-710, | DOI | MR
[8] Echeverría-Enríquez, A., León, M. De, Muñoz-Lecanda, M. C., Román-Roy, N.: Extended Hamiltonian systems in multisymplectic field theories. J. Math. Phys., 48, 11, 2007, 112901. | DOI | MR | Zbl
[9] Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N.: Geometry of Lagrangian first-order classical field theories. Forts. Phys., 44, 1996, 235-280, | DOI | MR | Zbl
[10] Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N.: Multivector fields and connections: Setting Lagrangian equations in field theories. J. Math. Phys., 39, 9, 1998, 4578-4603, | DOI | MR | Zbl
[11] Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N.: Multivector Field Formulation of Hamiltonian Field Theories: Equations and Symmetries. J. Phys. A: Math. Gen., 32, 1999, 8461-8484, | DOI | MR | Zbl
[12] Ferraris, M., Francaviglia, M.: Applications of the Poincaré-Cartan form in higher order field theories. Differential Geometry and Its Applications (Brno, 1986), Math. Appl.(East European Ser.), 27, 1987, 31-52, | MR | Zbl
[13] García, P. L.: The Poincaré-Cartan invariant in the calculus of variations. Symp. Math., 14, 1973, 219-246, | MR
[14] García, P. L., Muñoz, J.: On the geometrical structure of higher order variational calculus. Atti. Accad. Sci. Torino Cl. Sci. Fis. Math. Natur., 117, 1983, 127-147, | MR | Zbl
[15] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: New Lagrangian and Hamiltonian methods in field theory. 1997, World Scientific Publishing Co., Inc., River Edge, NJ, | MR | Zbl
[16] Goldschmidt, H., Sternberg, S.: The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier Grenoble, 23, 1, 1973, 203-267, | DOI | MR | Zbl
[17] Hélein, F., J, J. Kouneiher: Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage--Dedecker versus De Donder--Weyl. Adv. Theor. Math. Phys., 8, 2004, 565-601, | MR | Zbl
[18] Kouranbaeva, S., Shkoller, S.: A variational approach to second-order multisymplectic field theory. J. Geom. Phys., 4, 2000, 333-366, | DOI | MR | Zbl
[19] Krupka, D.: Introduction to Global Variational Geometry. 2015, Atlantis Studies in Variational Geometry, Atlantis Press, | MR | Zbl
[20] Krupka, D., Štěpánková, O.: On the Hamilton form in second order calculus of variations. Procs. Int. Meeting on Geometry and Physics, 1982, 85-101, | MR
[21] Mangiarotti, L., Sardanashvily, G.: Gauge Mechanics. 1998, World Scientific, Singapore, | MR
[22] Prieto-Martínez, P. D., Román-Roy, N.: Higher-order mechanics: variational principles and other topics. J. Geom. Mech., 5, 4, 2013, 493-510, | DOI | MR | Zbl
[23] Prieto-Martínez, P.D., Román-Roy, N.: Variational principles for multisymplectic second-order classical field theories. Int. J. Geom. Meth. Mod. Phys, 12, 8, 2015, 1560019. | MR
[24] Sarlet, W., Cantrijn, F.: Higher-order Noether symmetries and constants of the motion. J. Phys. A: Math. Gen., 14, 1981, 479-492, | DOI | MR | Zbl
[25] Saunders, D.J.: The geometry of jet bundles. London Mathematical Society, Lecture notes series, 142, 1989, Cambridge University Press, Cambridge, New York, | MR | Zbl