Keywords: fibered manifold; jet space; Lagrangian formalism; variational sequence; second variational derivative. cohomology; symmetry; conservation law
@article{COMIM_2016_24_2_a3,
author = {Palese, Marcella},
title = {Variations by generalized symmetries of local {Noether} strong currents equivalent to global canonical {Noether} currents},
journal = {Communications in Mathematics},
pages = {125--135},
year = {2016},
volume = {24},
number = {2},
mrnumber = {3590210},
zbl = {1366.58002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a3/}
}
TY - JOUR AU - Palese, Marcella TI - Variations by generalized symmetries of local Noether strong currents equivalent to global canonical Noether currents JO - Communications in Mathematics PY - 2016 SP - 125 EP - 135 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a3/ LA - en ID - COMIM_2016_24_2_a3 ER -
%0 Journal Article %A Palese, Marcella %T Variations by generalized symmetries of local Noether strong currents equivalent to global canonical Noether currents %J Communications in Mathematics %D 2016 %P 125-135 %V 24 %N 2 %U http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a3/ %G en %F COMIM_2016_24_2_a3
Palese, Marcella. Variations by generalized symmetries of local Noether strong currents equivalent to global canonical Noether currents. Communications in Mathematics, Tome 24 (2016) no. 2, pp. 125-135. http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a3/
[1] Allemandi, G., Francaviglia, M., Raiteri, M.: Covariant charges in Chern-Simons $AdS3$ gravity. Classical Quantum Gravity, 20, 3, 2003, 483-506, | MR
[2] Anderson, I. M., Duchamp, T.: On the existence of global variational principles. Amer. Math. J., 102, 1980, 781-868, | DOI | MR | Zbl
[3] Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Noether's second theorem for BRST symmetries. J. Math. Phys., 46, 5, 2005, 053517, 23 pp.. | DOI | MR | Zbl
[4] Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Noether's second theorem in a general setting reducible gauge theories. J. Phys., A38, 2005, 5329-5344, | MR | Zbl
[5] Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.: The antifield Koszul-Tate complex of reducible Noether identities. J. Math. Phys., 46, 10, 2005, 103513, 19 pp.. | DOI | MR | Zbl
[6] Bessel-Hagen, E.: Über die Erhaltungssätze der Elektrodynamik. Math. Ann., 84, 1921, 258-276, | DOI | MR
[7] Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M.: Conservation laws for non-global Lagrangians. Univ. Iagel. Acta Math., 41, 2003, 319-331, | MR | Zbl
[8] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms. J. Math. Phys., 46, 5, 2005, 052903, 15 pp. | DOI | MR | Zbl
[9] Cattafi, F., Palese, M., Winterroth, E.: Variational derivatives in locally Lagrangian field theories and Noether--Bessel-Hagen currents. Int. J. Geom. Methods Mod. Phys., 13, 8, 2016, 1650067. | MR | Zbl
[10] Dedecker, P., Tulczyjew, W. M.: Spectral sequences and the inverse problem of the calculus of variations. Lecture Notes in Mathematics, 836, 1980, 498-503, Springer--Verlag, | DOI | MR | Zbl
[11] Eck, D. J.: Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc., 247, 1981, 1-48, | MR | Zbl
[12] Ferraris, M., Francaviglia, M., Raiteri, M.: Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation). Class.Quant.Grav., 20, 2003, 4043-4066, | DOI | MR
[13] Ferraris, M., Palese, M., Winterroth, E.: Local variational problems and conservation laws. Diff. Geom. Appl, 29, 2011, S80-S85, | DOI | MR | Zbl
[14] Francaviglia, M., Palese, M., Vitolo, R.: Symmetries in finite order variational sequences. Czech. Math. J., 52, 1, 2002, 197-213, | DOI | MR | Zbl
[15] Francaviglia, M., Palese, M., Vitolo, R.: The Hessian and Jacobi Morphisms for Higher Order Calculus of Variations. Diff. Geom. Appl., 22, 1, 2005, 105-120, | DOI | MR | Zbl
[16] Francaviglia, M., Palese, M., Winterroth, E.: Locally variational invariant field equations and global currents: Chern-Simons theories. Commun. Math., 20, 1, 2012, 13-22, | MR | Zbl
[17] Francaviglia, M., Palese, M., Winterroth, E.: Variationally equivalent problems and variations of Noether currents. Int. J. Geom. Meth. Mod. Phys., 10, 1, 2013, 1220024. | MR | Zbl
[18] Francaviglia, M., Palese, M., Winterroth, E.: Cohomological obstructions in locally variational field theories. Jour. Phys. Conf. Series, 474, 2013, 012017.
[19] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Lagrangian supersymmetries depending on derivatives. Global analysis and cohomology. Comm. Math. Phys., 259, 1, 2005, 103-128, | DOI | MR | Zbl
[20] Kosmann-Schwarzbach, Y.: The Noether Theorems; translated from French by Bertram E. Schwarzbach. Sources and Studies in the History of Mathematics and Physical Sciences, Springer, New York , 2011, | MR
[21] Krupka, D.: Some Geometric Aspects of Variational Problems in Fibred Manifolds. Folia Fac. Sci. Nat. UJEP Brunensis, 14, 1973, 1-65,
[22] Krupka, D.: Variational Sequences on Finite Order Jet Spaces. Differential Geometry and its Applications, Proc. Conf., Brno, Czechoslovakia, 1989, 236-254, World Scientific, | MR
[23] Krupka, D., Krupková, O., Prince, G., Sarlet, W.: Contact symmetries of the Helmholtz form. Differential Geom. Appl., 25, 5, 2007, 518-542, | DOI | MR | Zbl
[24] Noether, E.: Invariante Variationsprobleme. Nachr. Ges. Wiss. Gött., Math. Phys. Kl., II, 1918, 235-257,
[25] Palese, M., Rossi, O., Winterroth, E., Musilová, J.: Variational sequences, representation sequences and applications in physics. SIGMA, 12, 2016, 045, 45 pages. | MR | Zbl
[26] Palese, M., Winterroth, E.: Covariant gauge-natural conservation laws. Rep. Math. Phys., 54, 3, 2004, 349-364, | DOI | MR | Zbl
[27] Palese, M., Winterroth, E.: Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles. Arch. Math. (Brno), 41, 3, 2005, 289-310, | MR | Zbl
[28] Palese, M., Winterroth, E.: Noether Theorems and Reality of Motion. Proc. Marcel Grossmann Meeting 2015, 2016, World Scientific, to appear.
[29] Palese, M., Winterroth, E.: Variational Lie derivative and cohomology classes. AIP Conf. Proc., 1360, 2011, 106-112, | Zbl
[30] Palese, M., Winterroth, E.: Topological obstructions in Lagrangian field theories, with an application to $3$D Chern--Simons gauge theory. preprint submitted. | MR
[31] Sardanashvily, G.: Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian. arXiv:math-ph/0302012 , 2003,
[32] Sardanashvily, G.: Noether identities of a differential operator. The Koszul-Tate complex. Int. J. Geom. Methods Mod. Phys., 2, 5, 2005, 873-886, | DOI | MR | Zbl
[33] Sardanashvily, G.: Noether's theorems. Applications in mechanics and field theory. Atlantis Studies in Variational Geometry, 3, 2016, Atlantis Press, Paris, xvii+297 pp.. | MR | Zbl
[34] Takens, F.: A global version of the inverse problem of the calculus of variations. J. Diff. Geom., 14, 1979, 543-562, | DOI | MR | Zbl
[35] Tulczyjew, W. M.: The Lagrange Complex. Bull. Soc. Math. France, 105, 1977, 419-431, | DOI | MR | Zbl
[36] Vinogradov, A. M.: On the algebro-geometric foundations of Lagrangian field theory. Soviet Math. Dokl., 18, 1977, 1200-1204, | MR | Zbl