Homogeneous variational problems and Lagrangian sections
Communications in Mathematics, Tome 24 (2016) no. 2, pp. 115-123 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define a canonical line bundle over the slit tangent bundle of a manifold, and define a Lagrangian section to be a homogeneous section of this line bundle. When a regularity condition is satisfied the Lagrangian section gives rise to local Finsler functions. For each such section we demonstrate how to construct a canonically parametrized family of geodesics, such that the geodesics of the local Finsler functions are reparametrizations.
We define a canonical line bundle over the slit tangent bundle of a manifold, and define a Lagrangian section to be a homogeneous section of this line bundle. When a regularity condition is satisfied the Lagrangian section gives rise to local Finsler functions. For each such section we demonstrate how to construct a canonically parametrized family of geodesics, such that the geodesics of the local Finsler functions are reparametrizations.
Classification : 53C22, 53C60
Keywords: Finsler geometry; line bundle; geodesics
@article{COMIM_2016_24_2_a2,
     author = {Saunders, D.J.},
     title = {Homogeneous variational problems and {Lagrangian} sections},
     journal = {Communications in Mathematics},
     pages = {115--123},
     year = {2016},
     volume = {24},
     number = {2},
     mrnumber = {3590209},
     zbl = {1360.53077},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a2/}
}
TY  - JOUR
AU  - Saunders, D.J.
TI  - Homogeneous variational problems and Lagrangian sections
JO  - Communications in Mathematics
PY  - 2016
SP  - 115
EP  - 123
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a2/
LA  - en
ID  - COMIM_2016_24_2_a2
ER  - 
%0 Journal Article
%A Saunders, D.J.
%T Homogeneous variational problems and Lagrangian sections
%J Communications in Mathematics
%D 2016
%P 115-123
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a2/
%G en
%F COMIM_2016_24_2_a2
Saunders, D.J. Homogeneous variational problems and Lagrangian sections. Communications in Mathematics, Tome 24 (2016) no. 2, pp. 115-123. http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a2/

[1] Chern, S.-S.: Finsler geometry is just Riemannian geometry without the quadratic restriction. Not. A.M.S., 43, 9, 1996, 959-963, | MR | Zbl

[2] Crampin, M.: Some remarks on the Finslerian version of Hilbert's Fourth Problem. Houston J. Math., 37, 2, 2011, 369-391, | MR | Zbl

[3] Crampin, M., Mestdag, T., Saunders, D.J.: The multiplier approach to the projective Finsler metrizability problem. Diff. Geom. Appl., 30, 6, 2012, 604-621, | DOI | MR | Zbl

[4] Crampin, M., Saunders, D.J.: Projective connections. J. Geom. Phys., 57, 2, 2007, 691-727, | DOI | MR | Zbl

[5] Hebda, J., Roberts, C.: Examples of Thomas--Whitehead projective connections. Diff. Geom. Appl., 8, 1998, 87-104, | MR | Zbl

[6] Massa, E., Pagani, E., Lorenzoni, P.: On the gauge structure of classical mechanics. Transport Theory and Statistical Physics, 29, 1--2, 2000, 69-91, | DOI | MR | Zbl

[7] Roberts, C.: The projective connections of T.Y. Thomas and J.H.C. Whitehead applied to invariant connections. Diff. Geom. Appl., 5, 1995, 237-255, | DOI | MR | Zbl

[8] Thomas, T.Y.: A projective theory of affinely connected manifolds. Math. Zeit., 25, 1926, 723-733, | DOI | MR