@article{COMIM_2016_24_2_a2,
author = {Saunders, D.J.},
title = {Homogeneous variational problems and {Lagrangian} sections},
journal = {Communications in Mathematics},
pages = {115--123},
year = {2016},
volume = {24},
number = {2},
mrnumber = {3590209},
zbl = {1360.53077},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a2/}
}
Saunders, D.J. Homogeneous variational problems and Lagrangian sections. Communications in Mathematics, Tome 24 (2016) no. 2, pp. 115-123. http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a2/
[1] Chern, S.-S.: Finsler geometry is just Riemannian geometry without the quadratic restriction. Not. A.M.S., 43, 9, 1996, 959-963, | MR | Zbl
[2] Crampin, M.: Some remarks on the Finslerian version of Hilbert's Fourth Problem. Houston J. Math., 37, 2, 2011, 369-391, | MR | Zbl
[3] Crampin, M., Mestdag, T., Saunders, D.J.: The multiplier approach to the projective Finsler metrizability problem. Diff. Geom. Appl., 30, 6, 2012, 604-621, | DOI | MR | Zbl
[4] Crampin, M., Saunders, D.J.: Projective connections. J. Geom. Phys., 57, 2, 2007, 691-727, | DOI | MR | Zbl
[5] Hebda, J., Roberts, C.: Examples of Thomas--Whitehead projective connections. Diff. Geom. Appl., 8, 1998, 87-104, | MR | Zbl
[6] Massa, E., Pagani, E., Lorenzoni, P.: On the gauge structure of classical mechanics. Transport Theory and Statistical Physics, 29, 1--2, 2000, 69-91, | DOI | MR | Zbl
[7] Roberts, C.: The projective connections of T.Y. Thomas and J.H.C. Whitehead applied to invariant connections. Diff. Geom. Appl., 5, 1995, 237-255, | DOI | MR | Zbl
[8] Thomas, T.Y.: A projective theory of affinely connected manifolds. Math. Zeit., 25, 1926, 723-733, | DOI | MR