Keywords: constrained variational calculus; second variation; Jacobi fields.
@article{COMIM_2016_24_2_a1,
author = {Massa, Enrico and Pagani, Enrico},
title = {On the notion of {Jacobi} fields in constrained calculus of variations},
journal = {Communications in Mathematics},
pages = {91--113},
year = {2016},
volume = {24},
number = {2},
mrnumber = {3590208},
zbl = {1364.49022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a1/}
}
Massa, Enrico; Pagani, Enrico. On the notion of Jacobi fields in constrained calculus of variations. Communications in Mathematics, Tome 24 (2016) no. 2, pp. 91-113. http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a1/
[1] Bolza, O.: The Determination of the Conjugate Points for Discontinuous Solutions in the Calculus of Variations. Amer. J. Math., 30, 1908, 209-221, | DOI | MR
[2] Caratheodory, C.: Über die diskontinuierlichen Lösungen in der Variationsrechnung, Doctor-Dissertation, Universität Göttingen 1904. Gesammelte Mathematische Scriften, 1954, C. H. Beck'sche Verlagsbuchhandlulng,
[3] Caratheodory, C.: Über die starken Maxima und Minima bei einfachen Integralen, Habilitationsschrift, Universität Gottingen 1905. Mathematische Annalen, 62, 1906, 449-503, | DOI | MR
[4] Caratheodory, C.: Sur les points singuliers du problème du Calcul des Variations dans le plan. Annali di Matematica pura e applicata, 21, 1913, 153-171,
[5] Dresden, A.: An Example of the Indicatrix in the Calculus of Variations. Am. Math. Mon., 14, 1907, 119-126, | DOI | MR
[6] Dresden, A.: An Example of the Indicatrix in the Calculus of Variations (continued). Am. Math. Mon., 14, 1907, 143-150, | DOI | MR
[7] Dresden, A.: The Second Derivatives of the Extremal-Integral. Trans. Amer. Math. Soc., 9, 1908, 467-486, | DOI | MR
[8] Erdmann, G.: Über die unstetige Lösungen in der Variationsrechnung. J. Reine Angew. Math., 82, 1877, 21-30, | MR
[9] Giaquinta, M., Hildebrandt, S.: Calculus of variations I, II. 1996, Springer-Verlag, Berlin, Heidelberg, New York, | MR
[10] Graves, L.M.: Discontinuous Solutions in the Calculus of Variations. Bull. Amer. Math. Soc., 36, 1930, 831-846, | DOI | MR
[11] Graves, L.M.: Discontinuous Solutions in Space Problems of the Calculus of Variations. Amer. J. Math., 52, 1930, 1-28, | DOI | MR
[12] Hadamard, J.: Leçons sur le calcul des variations. Hermann et fils, Paris, 1910, 3-88,
[13] Hestenes, M. R.: Calculus of variations and optimal control theory. 1966, Wiley, New York, London, Sydney, | MR | Zbl
[14] Massa, E., Bruno, D., Luria, G., Pagani, E.: Geometric constrained variational calculus. I: Piecewise smooth extremals. Int. J. Geom. Methods Mod. Phys., 12, 2015, 1550061. | DOI | MR | Zbl
[15] Massa, E., Bruno, D., Luria, G., Pagani, E.: Geometric constrained variational calculus. II: The second variation (Part I). Int. J. Geom. Methods Mod. Phys., 13, 2016, 1550132. | MR | Zbl
[16] Massa, E., Luria, G., Pagani,, E.: Geometric constrained variational calculus. III: The second variation (Part II). Int. J. Geom. Methods Mod. Phys., 13, 2016, 1650038. | MR | Zbl
[17] Milyutin, A. A., Osmolovskii, N. P.: Calculus of Variations and Optimal Control (Translations of Mathematical Monographs). 1998, American Mathematical Society, | MR
[18] Osmolovskii, N.P., Lempio, F.: Jacobi conditions and the Riccati equation for a broken extremal. J. Math. Sci, 100, 2000, 2572-2592, | DOI | MR
[19] Osmolovskii, N.P., Lempio, F.: Transformation of Quadratic Forms to Perfect Squares for Broken Extremals. Set-Valued Var. Anal., 10, 2002, 209-232, | MR | Zbl
[20] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. 1962, Interscience Publishers John Wiley & Sons Inc, New York-London, | MR
[21] Reid, W.T.: Discontinuous Solutions in the Non-Parametric Problem of Mayer in the Calculus of Variations. Amer. J. Math., 57, 1935, 69-93, | DOI | MR | Zbl
[22] Rider, P.R.: The figuratix in the Calculus of Variations. Trans. Amer. Math. Soc., 28, 1926, 640-653, | DOI | MR
[23] Sagan, H.: Introduction to the calculus of variations. 1969, McGraw--Hill Book Company, New York,