On the notion of Jacobi fields in constrained calculus of variations
Communications in Mathematics, Tome 24 (2016) no. 2, pp. 91-113 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In variational calculus, the minimality of a given functional under arbitrary deformations with fixed end-points is established through an analysis of the so called \emph {second variation}. In this paper, the argument is examined in the context of constrained variational calculus, assuming piecewise differentiable extremals, commonly referred to as \emph {extremaloids}. The approach relies on the existence of a fully covariant representation of the second variation of the action functional, based on a family of \emph {local} gauge transformations of the original Lagrangian and on a set of scalar attributes of the extremaloid, called the corners' \emph {strengths} \cite {mlp}. In discussing the positivity of the second variation, a relevant role is played by the \emph {Jacobi fields}, defined as infinitesimal generators of $1$-parameter groups of diffeomorphisms preserving the extremaloids. Along a piecewise differentiable extremal, these fields are generally discontinuous across the corners. A thorough analysis of this point is presented. An alternative characterization of the Jacobi fields as solutions of a suitable \emph {accessory variational problem} is established.
In variational calculus, the minimality of a given functional under arbitrary deformations with fixed end-points is established through an analysis of the so called \emph {second variation}. In this paper, the argument is examined in the context of constrained variational calculus, assuming piecewise differentiable extremals, commonly referred to as \emph {extremaloids}. The approach relies on the existence of a fully covariant representation of the second variation of the action functional, based on a family of \emph {local} gauge transformations of the original Lagrangian and on a set of scalar attributes of the extremaloid, called the corners' \emph {strengths} \cite {mlp}. In discussing the positivity of the second variation, a relevant role is played by the \emph {Jacobi fields}, defined as infinitesimal generators of $1$-parameter groups of diffeomorphisms preserving the extremaloids. Along a piecewise differentiable extremal, these fields are generally discontinuous across the corners. A thorough analysis of this point is presented. An alternative characterization of the Jacobi fields as solutions of a suitable \emph {accessory variational problem} is established.
Classification : 49J--, 53B05, 58F05, 65K10, 70D10, 70Q05
Keywords: constrained variational calculus; second variation; Jacobi fields.
@article{COMIM_2016_24_2_a1,
     author = {Massa, Enrico and Pagani, Enrico},
     title = {On the notion of {Jacobi} fields in constrained calculus of variations},
     journal = {Communications in Mathematics},
     pages = {91--113},
     year = {2016},
     volume = {24},
     number = {2},
     mrnumber = {3590208},
     zbl = {1364.49022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a1/}
}
TY  - JOUR
AU  - Massa, Enrico
AU  - Pagani, Enrico
TI  - On the notion of Jacobi fields in constrained calculus of variations
JO  - Communications in Mathematics
PY  - 2016
SP  - 91
EP  - 113
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a1/
LA  - en
ID  - COMIM_2016_24_2_a1
ER  - 
%0 Journal Article
%A Massa, Enrico
%A Pagani, Enrico
%T On the notion of Jacobi fields in constrained calculus of variations
%J Communications in Mathematics
%D 2016
%P 91-113
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a1/
%G en
%F COMIM_2016_24_2_a1
Massa, Enrico; Pagani, Enrico. On the notion of Jacobi fields in constrained calculus of variations. Communications in Mathematics, Tome 24 (2016) no. 2, pp. 91-113. http://geodesic.mathdoc.fr/item/COMIM_2016_24_2_a1/

[1] Bolza, O.: The Determination of the Conjugate Points for Discontinuous Solutions in the Calculus of Variations. Amer. J. Math., 30, 1908, 209-221, | DOI | MR

[2] Caratheodory, C.: Über die diskontinuierlichen Lösungen in der Variationsrechnung, Doctor-Dissertation, Universität Göttingen 1904. Gesammelte Mathematische Scriften, 1954, C. H. Beck'sche Verlagsbuchhandlulng,

[3] Caratheodory, C.: Über die starken Maxima und Minima bei einfachen Integralen, Habilitationsschrift, Universität Gottingen 1905. Mathematische Annalen, 62, 1906, 449-503, | DOI | MR

[4] Caratheodory, C.: Sur les points singuliers du problème du Calcul des Variations dans le plan. Annali di Matematica pura e applicata, 21, 1913, 153-171,

[5] Dresden, A.: An Example of the Indicatrix in the Calculus of Variations. Am. Math. Mon., 14, 1907, 119-126, | DOI | MR

[6] Dresden, A.: An Example of the Indicatrix in the Calculus of Variations (continued). Am. Math. Mon., 14, 1907, 143-150, | DOI | MR

[7] Dresden, A.: The Second Derivatives of the Extremal-Integral. Trans. Amer. Math. Soc., 9, 1908, 467-486, | DOI | MR

[8] Erdmann, G.: Über die unstetige Lösungen in der Variationsrechnung. J. Reine Angew. Math., 82, 1877, 21-30, | MR

[9] Giaquinta, M., Hildebrandt, S.: Calculus of variations I, II. 1996, Springer-Verlag, Berlin, Heidelberg, New York, | MR

[10] Graves, L.M.: Discontinuous Solutions in the Calculus of Variations. Bull. Amer. Math. Soc., 36, 1930, 831-846, | DOI | MR

[11] Graves, L.M.: Discontinuous Solutions in Space Problems of the Calculus of Variations. Amer. J. Math., 52, 1930, 1-28, | DOI | MR

[12] Hadamard, J.: Leçons sur le calcul des variations. Hermann et fils, Paris, 1910, 3-88,

[13] Hestenes, M. R.: Calculus of variations and optimal control theory. 1966, Wiley, New York, London, Sydney, | MR | Zbl

[14] Massa, E., Bruno, D., Luria, G., Pagani, E.: Geometric constrained variational calculus. I: Piecewise smooth extremals. Int. J. Geom. Methods Mod. Phys., 12, 2015, 1550061. | DOI | MR | Zbl

[15] Massa, E., Bruno, D., Luria, G., Pagani, E.: Geometric constrained variational calculus. II: The second variation (Part I). Int. J. Geom. Methods Mod. Phys., 13, 2016, 1550132. | MR | Zbl

[16] Massa, E., Luria, G., Pagani,, E.: Geometric constrained variational calculus. III: The second variation (Part II). Int. J. Geom. Methods Mod. Phys., 13, 2016, 1650038. | MR | Zbl

[17] Milyutin, A. A., Osmolovskii, N. P.: Calculus of Variations and Optimal Control (Translations of Mathematical Monographs). 1998, American Mathematical Society, | MR

[18] Osmolovskii, N.P., Lempio, F.: Jacobi conditions and the Riccati equation for a broken extremal. J. Math. Sci, 100, 2000, 2572-2592, | DOI | MR

[19] Osmolovskii, N.P., Lempio, F.: Transformation of Quadratic Forms to Perfect Squares for Broken Extremals. Set-Valued Var. Anal., 10, 2002, 209-232, | MR | Zbl

[20] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. 1962, Interscience Publishers John Wiley & Sons Inc, New York-London, | MR

[21] Reid, W.T.: Discontinuous Solutions in the Non-Parametric Problem of Mayer in the Calculus of Variations. Amer. J. Math., 57, 1935, 69-93, | DOI | MR | Zbl

[22] Rider, P.R.: The figuratix in the Calculus of Variations. Trans. Amer. Math. Soc., 28, 1926, 640-653, | DOI | MR

[23] Sagan, H.: Introduction to the calculus of variations. 1969, McGraw--Hill Book Company, New York,