Diophantine Approximations of Infinite Series and Products
Communications in Mathematics, Tome 24 (2016) no. 1, pp. 71-82 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This survey paper presents some old and new results in Diophantine approximations. Some of these results improve Erdos' results on~irrationality. The results in irrationality, transcendence and linear independence of infinite series and infinite products are put together with idea of irrational sequences and expressible sets.
This survey paper presents some old and new results in Diophantine approximations. Some of these results improve Erdos' results on~irrationality. The results in irrationality, transcendence and linear independence of infinite series and infinite products are put together with idea of irrational sequences and expressible sets.
Classification : 11J72, 11J81, 11K55
Keywords: Infinite products; irrationality; linear independence; expressible set
@article{COMIM_2016_24_1_a5,
     author = {Kolouch, Ond\v{r}ej and Novotn\'y, Luk\'a\v{s}},
     title = {Diophantine {Approximations} of {Infinite} {Series} and {Products}},
     journal = {Communications in Mathematics},
     pages = {71--82},
     year = {2016},
     volume = {24},
     number = {1},
     mrnumber = {3546807},
     zbl = {06670232},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a5/}
}
TY  - JOUR
AU  - Kolouch, Ondřej
AU  - Novotný, Lukáš
TI  - Diophantine Approximations of Infinite Series and Products
JO  - Communications in Mathematics
PY  - 2016
SP  - 71
EP  - 82
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a5/
LA  - en
ID  - COMIM_2016_24_1_a5
ER  - 
%0 Journal Article
%A Kolouch, Ondřej
%A Novotný, Lukáš
%T Diophantine Approximations of Infinite Series and Products
%J Communications in Mathematics
%D 2016
%P 71-82
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a5/
%G en
%F COMIM_2016_24_1_a5
Kolouch, Ondřej; Novotný, Lukáš. Diophantine Approximations of Infinite Series and Products. Communications in Mathematics, Tome 24 (2016) no. 1, pp. 71-82. http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a5/

[1] Badea, C.: The irrationality of certain infinite products. Studia Univ. Babeş-Bolyai Math., 31, 3, 1986, 3-8, | MR | Zbl

[2] Badea, C.: The irrationality of certain infinite series. Glasgow Mathematical Journal, 29, 2, 1987, 221-228, | DOI | MR | Zbl

[3] Duverney, D.: Sur les séries de nombres rationnels à convergence rapide. Comptes Rendus de l'Académie des Sciences, Series I, Mathematics, 328, 7, 1999, 553-556, | MR | Zbl

[4] Erdős, P.: Problem 4321. The American Mathematical Monthly, 64, 7, 1950,

[5] Erdős, P.: Some Problems and Results on the Irrationality of the Sum of Infinite Series. Journal of Mathematical Sciences, 10, 1975, 1-7, | MR | Zbl

[6] Erdős, P.: Erdős problem no. 6. 1995 Prague Midsummer Combinatorial Workshop, KAM Series (95-309) (ed. M. Klazar) (KAM MPP UK, Prague, 1995), 1995,

[7] Erdős, P., Straus, E. G.: On the irrationality of certain Ahmes series. Journal of Indian Mathematical Society, 27, 1964, 129-133, | MR

[8] Hančl, J.: Expression of Real Numbers with the Help of Infinite Series. Acta Arithmetica, LIX, 2, 1991, 97-104, | DOI | MR | Zbl

[9] Hančl, J.: Criterion for Irrational Sequences. Journal of Number Theory, 43, 1, 1993, 88-92, | DOI | MR | Zbl

[10] Hančl, J., Filip, F.: Irrationality Measure of Sequences. Hiroshima Math. J., 35, 2, 2005, 183-195, | MR | Zbl

[11] Hančl, J., Kolouch, O.: Erdős' method for determining the irrationality of products. Bull. Aust. Math. Soc., 84, 3, 2011, 414-424, | DOI | MR | Zbl

[12] Hančl, J., Kolouch, O.: Irrationality of infinite products. Publ. Math. Debrecen, 83, 4, 2013, 667-681, | DOI | MR | Zbl

[13] Hančl, J., Kolouch, O., Novotný, L.: A Criterion for linear independence of infinite products. An. St. Univ. Ovidius Constanta, 23, 2, 2015, 107-120, | MR | Zbl

[14] Hančl, J., Kolouch, O., Pulcerová, S., Štěpnička, J.: A note on the transcendence of infinite products. Czechoslovak Math. J., 62, 137, 2012, 613-623, | DOI | MR | Zbl

[15] Hančl, J., Korčeková, K., Novotný, L.: Productly linearly independent sequences. Stud. Sci. Math. Hung., 52, 2015, 350-370, | MR | Zbl

[16] Hančl, J., Nair, R., Novotný, L.: On expressible sets of products. Period. Math. Hung., 69, 2, 2014, 199-206, | DOI | MR | Zbl

[17] Hančl, J., Nair, R., Novotný, L., Šustek, J.: On the Hausdorff dimension of the expressible set of certain sequences. Acta Arithmetica, 155, 1, 2012, 85-90, | DOI | MR | Zbl

[18] Hančl, J., Nair, R., Šustek, J.: On the Lebesgue measure of the expressible set of certain sequences. Indag. Mathem., 17, 4, 2006, 567-581, | DOI | MR | Zbl

[19] Hančl, J., Schinzel, A., Šustek, J.: On Expressible Sets of Geometric Sequences. Funct. Approx. Comment. Math., 38, 2008, 341-357, | MR | Zbl

[20] Kurosawa, T., Tachiya, Y., Tanaka, T.: Algebraic independence of the values of certain infinite products and their derivatives related to Fibonacci and Lucas numbers (Analytic Number Theory: Number Theory through Approximation and Asymptotics). Proceedings of Institute for Mathematical Sciences, Kyoto University, 1874, 2014, 81-93, Research Institute for Mathematical Sciences, | MR

[21] Luca, F., Tachiya, Y.: Algebraic independence of infinite products generated by Fibonacci and Lucas numbers. Hokkaido Math. J., 43, 2014, 1-20, | DOI | MR | Zbl

[22] Nyblom, M. A.: On the construction of a family of transcendental valued infinite products. Fibonacci Quart., 42, 4, 2004, 353-358, | MR | Zbl

[23] Sándor, J.: Some classes of irrational numbers. Studia Universitatis Babeş-Bolyai Mathematica, 29, 1984, 3-12, | MR | Zbl

[24] Väänänen, K.: On the approximation of certain infinite products. Math. Scand., 73, 2, 1993, 197-208, | DOI | MR | Zbl