Keywords: Infinite products; irrationality; linear independence; expressible set
@article{COMIM_2016_24_1_a5,
author = {Kolouch, Ond\v{r}ej and Novotn\'y, Luk\'a\v{s}},
title = {Diophantine {Approximations} of {Infinite} {Series} and {Products}},
journal = {Communications in Mathematics},
pages = {71--82},
year = {2016},
volume = {24},
number = {1},
mrnumber = {3546807},
zbl = {06670232},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a5/}
}
Kolouch, Ondřej; Novotný, Lukáš. Diophantine Approximations of Infinite Series and Products. Communications in Mathematics, Tome 24 (2016) no. 1, pp. 71-82. http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a5/
[1] Badea, C.: The irrationality of certain infinite products. Studia Univ. Babeş-Bolyai Math., 31, 3, 1986, 3-8, | MR | Zbl
[2] Badea, C.: The irrationality of certain infinite series. Glasgow Mathematical Journal, 29, 2, 1987, 221-228, | DOI | MR | Zbl
[3] Duverney, D.: Sur les séries de nombres rationnels à convergence rapide. Comptes Rendus de l'Académie des Sciences, Series I, Mathematics, 328, 7, 1999, 553-556, | MR | Zbl
[4] Erdős, P.: Problem 4321. The American Mathematical Monthly, 64, 7, 1950,
[5] Erdős, P.: Some Problems and Results on the Irrationality of the Sum of Infinite Series. Journal of Mathematical Sciences, 10, 1975, 1-7, | MR | Zbl
[6] Erdős, P.: Erdős problem no. 6. 1995 Prague Midsummer Combinatorial Workshop, KAM Series (95-309) (ed. M. Klazar) (KAM MPP UK, Prague, 1995), 1995,
[7] Erdős, P., Straus, E. G.: On the irrationality of certain Ahmes series. Journal of Indian Mathematical Society, 27, 1964, 129-133, | MR
[8] Hančl, J.: Expression of Real Numbers with the Help of Infinite Series. Acta Arithmetica, LIX, 2, 1991, 97-104, | DOI | MR | Zbl
[9] Hančl, J.: Criterion for Irrational Sequences. Journal of Number Theory, 43, 1, 1993, 88-92, | DOI | MR | Zbl
[10] Hančl, J., Filip, F.: Irrationality Measure of Sequences. Hiroshima Math. J., 35, 2, 2005, 183-195, | MR | Zbl
[11] Hančl, J., Kolouch, O.: Erdős' method for determining the irrationality of products. Bull. Aust. Math. Soc., 84, 3, 2011, 414-424, | DOI | MR | Zbl
[12] Hančl, J., Kolouch, O.: Irrationality of infinite products. Publ. Math. Debrecen, 83, 4, 2013, 667-681, | DOI | MR | Zbl
[13] Hančl, J., Kolouch, O., Novotný, L.: A Criterion for linear independence of infinite products. An. St. Univ. Ovidius Constanta, 23, 2, 2015, 107-120, | MR | Zbl
[14] Hančl, J., Kolouch, O., Pulcerová, S., Štěpnička, J.: A note on the transcendence of infinite products. Czechoslovak Math. J., 62, 137, 2012, 613-623, | DOI | MR | Zbl
[15] Hančl, J., Korčeková, K., Novotný, L.: Productly linearly independent sequences. Stud. Sci. Math. Hung., 52, 2015, 350-370, | MR | Zbl
[16] Hančl, J., Nair, R., Novotný, L.: On expressible sets of products. Period. Math. Hung., 69, 2, 2014, 199-206, | DOI | MR | Zbl
[17] Hančl, J., Nair, R., Novotný, L., Šustek, J.: On the Hausdorff dimension of the expressible set of certain sequences. Acta Arithmetica, 155, 1, 2012, 85-90, | DOI | MR | Zbl
[18] Hančl, J., Nair, R., Šustek, J.: On the Lebesgue measure of the expressible set of certain sequences. Indag. Mathem., 17, 4, 2006, 567-581, | DOI | MR | Zbl
[19] Hančl, J., Schinzel, A., Šustek, J.: On Expressible Sets of Geometric Sequences. Funct. Approx. Comment. Math., 38, 2008, 341-357, | MR | Zbl
[20] Kurosawa, T., Tachiya, Y., Tanaka, T.: Algebraic independence of the values of certain infinite products and their derivatives related to Fibonacci and Lucas numbers (Analytic Number Theory: Number Theory through Approximation and Asymptotics). Proceedings of Institute for Mathematical Sciences, Kyoto University, 1874, 2014, 81-93, Research Institute for Mathematical Sciences, | MR
[21] Luca, F., Tachiya, Y.: Algebraic independence of infinite products generated by Fibonacci and Lucas numbers. Hokkaido Math. J., 43, 2014, 1-20, | DOI | MR | Zbl
[22] Nyblom, M. A.: On the construction of a family of transcendental valued infinite products. Fibonacci Quart., 42, 4, 2004, 353-358, | MR | Zbl
[23] Sándor, J.: Some classes of irrational numbers. Studia Universitatis Babeş-Bolyai Mathematica, 29, 1984, 3-12, | MR | Zbl
[24] Väänänen, K.: On the approximation of certain infinite products. Math. Scand., 73, 2, 1993, 197-208, | DOI | MR | Zbl