Keywords: Classical probability theory; upgrading; quantum phenomenon; category theory; D-poset of fuzzy sets; Łukasiewicz tribe; observable; statistical map; duality
@article{COMIM_2016_24_1_a3,
author = {Fri\v{c}, Roman and Pap\v{c}o, Martin},
title = {Upgrading {Probability} via {Fractions} of {Events}},
journal = {Communications in Mathematics},
pages = {29--41},
year = {2016},
volume = {24},
number = {1},
mrnumber = {3546805},
zbl = {06670230},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a3/}
}
Frič, Roman; Papčo, Martin. Upgrading Probability via Fractions of Events. Communications in Mathematics, Tome 24 (2016) no. 1, pp. 29-41. http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a3/
[1] Adámek, J.: Theory of Mathematical Structures. 1983, Reidel, Dordrecht, | MR
[2] Bugajski, S.: Statistical maps I. Basic properties. Math. Slovaca, 51, 3, 2001, 321-342, | MR | Zbl
[3] Bugajski, S.: Statistical maps II. Operational random variables. Math. Slovaca, 51, 3, 2001, 343-361, | MR | Zbl
[4] Chovanec, F., Frič, R.: States as morphisms. Internat. J. Theoret. Phys., 49, 12, 2010, 3050-3060, | DOI | MR | Zbl
[5] Chovanec, F., Kôpka, F.: D-posets. Handbook of Quantum Logic and Quantum Structures: Quantum Structures, 2007, 367-428, Elsevier, Amsterdam, Edited by K. Engesser, D. M. Gabbay and D. Lehmann. | MR | Zbl
[6] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. 2000, Kluwer Academic Publ. and Ister Science, Dordrecht and Bratislava, | MR
[7] Frič, R.: Łukasiewicz tribes are absolutely sequentially closed bold algebras. Czechoslovak Math. J., 52, 2002, 861-874, | DOI | MR | Zbl
[8] Frič, R.: Remarks on statistical maps and fuzzy (operational) random variables. Tatra Mt. Math. Publ, 30, 2005, 21-34, | MR | Zbl
[9] Frič, R.: Extension of domains of states. Soft Comput., 13, 2009, 63-70, | DOI | Zbl
[10] Frič, R.: On D-posets of fuzzy sets. Math. Slovaca, 64, 2014, 545-554, | DOI | MR | Zbl
[11] Frič, R-, Papčo, M.: A categorical approach to probability. Studia Logica, 94, 2010, 215-230, | DOI | MR | Zbl
[12] Frič, R., Papčo, M.: Fuzzification of crisp domains. Kybernetika, 46, 2010, 1009-1024, | MR | Zbl
[13] Frič, R., Papčo, M.: On probability domains. Internat. J. Theoret. Phys., 49, 2010, 3092-3100, | DOI | MR | Zbl
[14] Frič, R., Papčo, M.: On probability domains II. Internat. J. Theoret. Phys., 50, 2011, 3778-3786, | DOI | MR | Zbl
[15] Frič, R., Papčo, M.: On probability domains III. Internat. J. Theoret. Phys., 54, 2015, 4237-4246, | DOI | MR | Zbl
[16] Goguen, J. A.: A categorical manifesto. Math. Struct. Comp. Sci., 1, 1991, 49-67, | DOI | MR | Zbl
[17] Gudder, S.: Fuzzy probability theory. Demonstratio Math., 31, 1998, 235-254, | MR | Zbl
[18] Kolmogorov, A. N.: Grundbegriffe der wahrscheinlichkeitsrechnung. 1933, Springer, Berlin, | MR | Zbl
[19] Kôpka, F., Chovanec, F.: D-posets. Math. Slovaca, 44, 1994, 21-34, | MR
[20] Kuková, M., Navara, M.: What observables can be. Theory of Functions, Its Applications, and Related Questions, Transactions of the Mathematical Institute of N.I. Lobachevsky 46, 2013, 62-70, Kazan Federal University,
[21] Loève, M.: Probability theory. 1963, D. Van Nostrand, Inc., Princeton, New Jersey, | MR | Zbl
[22] Mesiar, R.: Fuzzy sets and probability theory. Tatra Mt. Math. Publ., 1, 1992, 105-123, | MR | Zbl
[23] Navara, M.: Triangular norms and measures of fuzzy sets. Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, 2005, 345-390, Elsevier, | MR | Zbl
[24] Navara, M.: Probability theory of fuzzy events. Fourth Conference of the European Society for Fuzzy Logic and Technology and 11 Rencontres Francophones sur la Logique Floue et ses Applications, 2005, 325-329, Universitat Polit ecnica de Catalunya, Barcelona, Spain,
[25] Navara, M.: Tribes revisited. 30th Linz Seminar on Fuzzy Set Theory: The Legacy of 30 Seminars, Where Do We Stand and Where Do We Go?, 2009, 81-84, Johannes Kepler University, Linz, Austria,
[26] Papčo, M.: On measurable spaces and measurable maps. Tatra Mt. Math. Publ., 28, 2004, 125-140, | MR | Zbl
[27] Papčo, M.: On fuzzy random variables: examples and generalizations. Tatra Mt. Math. Publ., 30, 2005, 175-185, | MR | Zbl
[28] Papčo, M.: On effect algebras. Soft Comput., 12, 2008, 373-379, | DOI | Zbl
[29] Papčo, M.: Fuzzification of probabilistic objects. 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013), doi:10.2991/eusat.2013.10, 2013, 67-71, | DOI
[30] Riečan, B., Mundici, D.: Probability on MV-algebras. Handbook of Measure Theory, Vol. II, 2002, 869-910, North-Holland, Amsterdam, | MR | Zbl
[31] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering. 1997, Kluwer Acad. Publ., Dordrecht-Boston-London, | MR
[32] Zadeh, L. A.: Probability measures of fuzzy events. J. Math. Anal. Appl., 23, 1968, 421-427, | DOI | MR | Zbl
[33] Zadeh, L. A.: Fuzzy probabilities. Inform. Process. Manag., 19, 1984, 148-153, | Zbl