Torsion and the second fundamental form for distributions
Communications in Mathematics, Tome 24 (2016) no. 1, pp. 23-28
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The second fundamental form of Riemannian geometry is generalised to the case of a manifold with a linear connection and an integrable distribution. This bilinear form is generally not symmetric and its skew part is the torsion. The form itself is closely related to the shape map of the connection. The codimension one case generalises the traditional shape operator of Riemannian geometry.
The second fundamental form of Riemannian geometry is generalised to the case of a manifold with a linear connection and an integrable distribution. This bilinear form is generally not symmetric and its skew part is the torsion. The form itself is closely related to the shape map of the connection. The codimension one case generalises the traditional shape operator of Riemannian geometry.
Classification : 53B05, 53C05, 58A10
Keywords: Torsion; second fundamental form; shape operator; integrable distributions
@article{COMIM_2016_24_1_a2,
     author = {Prince, Geoff},
     title = {Torsion and the second fundamental form for distributions},
     journal = {Communications in Mathematics},
     pages = {23--28},
     year = {2016},
     volume = {24},
     number = {1},
     mrnumber = {3546804},
     zbl = {1354.53027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a2/}
}
TY  - JOUR
AU  - Prince, Geoff
TI  - Torsion and the second fundamental form for distributions
JO  - Communications in Mathematics
PY  - 2016
SP  - 23
EP  - 28
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a2/
LA  - en
ID  - COMIM_2016_24_1_a2
ER  - 
%0 Journal Article
%A Prince, Geoff
%T Torsion and the second fundamental form for distributions
%J Communications in Mathematics
%D 2016
%P 23-28
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a2/
%G en
%F COMIM_2016_24_1_a2
Prince, Geoff. Torsion and the second fundamental form for distributions. Communications in Mathematics, Tome 24 (2016) no. 1, pp. 23-28. http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a2/

[1] Bejancu, A., Farran, H.R.: Foliations and Geometric Structures. 2006, Springer, | MR | Zbl

[2] Crampin, M., Prince, G.E.: The geodesic spray, the vertical projection, and Raychaudhuri's equation. Gen. Rel. Grav., 16, 1984, 675-689, | DOI | MR | Zbl

[3] Jerie, M., Prince, G.E.: A generalised Raychaudhuri equation for second–order differential equations. J. Geom. Phys., 34, 3, 2000, 226-241, | DOI | MR

[4] Jerie, M., Prince, G.E.: Jacobi fields and linear connections for arbitrary second order ODE's. J. Geom. Phys., 43, 4, 2002, 351-370, | DOI | MR

[5] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. 1, 1963, Wiley-Interscience, New York, | MR | Zbl

[6] Lee, J. M.: Riemannian manifolds: an introduction to curvature. 1997, Springer-Verlag, New York, | MR | Zbl