Keywords: Torsion; second fundamental form; shape operator; integrable distributions
@article{COMIM_2016_24_1_a2,
author = {Prince, Geoff},
title = {Torsion and the second fundamental form for distributions},
journal = {Communications in Mathematics},
pages = {23--28},
year = {2016},
volume = {24},
number = {1},
mrnumber = {3546804},
zbl = {1354.53027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a2/}
}
Prince, Geoff. Torsion and the second fundamental form for distributions. Communications in Mathematics, Tome 24 (2016) no. 1, pp. 23-28. http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a2/
[1] Bejancu, A., Farran, H.R.: Foliations and Geometric Structures. 2006, Springer, | MR | Zbl
[2] Crampin, M., Prince, G.E.: The geodesic spray, the vertical projection, and Raychaudhuri's equation. Gen. Rel. Grav., 16, 1984, 675-689, | DOI | MR | Zbl
[3] Jerie, M., Prince, G.E.: A generalised Raychaudhuri equation for second–order differential equations. J. Geom. Phys., 34, 3, 2000, 226-241, | DOI | MR
[4] Jerie, M., Prince, G.E.: Jacobi fields and linear connections for arbitrary second order ODE's. J. Geom. Phys., 43, 4, 2002, 351-370, | DOI | MR
[5] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. 1, 1963, Wiley-Interscience, New York, | MR | Zbl
[6] Lee, J. M.: Riemannian manifolds: an introduction to curvature. 1997, Springer-Verlag, New York, | MR | Zbl