Keywords: Logarithm function; Hypergeometric functions; Integral representation; Lerch transcendent function; Alternating harmonic numbers; Combinatorial series identities; Summation formulas; Partial fraction approach; Binomial coefficients.
@article{COMIM_2016_24_1_a1,
author = {Sofo, Anthony},
title = {Integrals of logarithmic and hypergeometric functions},
journal = {Communications in Mathematics},
pages = {7--22},
year = {2016},
volume = {24},
number = {1},
mrnumber = {3546803},
zbl = {1352.05012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a1/}
}
Sofo, Anthony. Integrals of logarithmic and hypergeometric functions. Communications in Mathematics, Tome 24 (2016) no. 1, pp. 7-22. http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a1/
[1] Adamchik, V., Srivastava, H. M.: Some series of the zeta and related functions. Analysis, 18, 2, 1998, 131-144, | DOI | MR | Zbl
[2] Borwein, J. M., Zucker, I. J., Boersma, J.: The evaluation of character Euler double sums. Ramanujan J., 15, 2008, 377-405, | DOI | MR | Zbl
[3] Choi, J.: Log-Sine and Log-Cosine Integrals. Honam Mathematical J, 35, 2, 2013, 137-146, | DOI | MR | Zbl
[4] Choi, J., Cvijoviæ, D.: Values of the polygamma functions at rational arguments. J. Phys. A: Math. Theor., 40, 50, 2007, 15019-15028, Corrigendum, ibidem, 43 (2010), 239801 (1p). | DOI | MR
[5] Choi, J.: Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers. J. Inequal. Appl., 49, 2013, 1-11, | MR | Zbl
[6] Choi, J., Srivastava, H. M.: Some summation formulas involving harmonic numbers and generalized harmonic numbers. Math. Comput. Modelling., 54, 2011, 2220-2234, | DOI | MR | Zbl
[7] Chu, W.: Summation formulae involving harmonic numbers. Filomat, 26, 1, 2012, 143-152, | DOI | MR | Zbl
[8] Ciaurri, O., Navas, L. M., Ruiz, F. J., Varano, J. L.: A simple computation of $\zeta (2k)$. Amer. Math. Monthly., 122, 5, 2015, 444-451, | DOI | MR
[9] Coffey, M. W., Lubbers, N.: On generalized harmonic number sums. Appl. Math. Comput., 217, 2010, 689-698, | MR | Zbl
[10] Dattoli, G., Srivastava, H. M.: A note on harmonic numbers, umbral calculus and generating functions. Appl. Math. Lett. , 21, 7, 2008, 686-693, | DOI | MR | Zbl
[11] Devoto, A., Duke, D. W.: Table of integrals and formulae for Feynman diagram calculation. La Rivista del Nuovo Cimento, 7, 6, 1984, 1-39, | MR
[12] Flajolet, P., Salvy, B.: Euler sums and contour integral representations. Exp. Math., 7, 1, 1998, 15-35, | DOI | MR | Zbl
[13] Freitas, P.: Integrals of polylogarithmic functions, recurrence relations and associated Euler sums. Math. Comp., 74, 251, 2005, 1425-1440, | DOI | MR | Zbl
[14] Kölbig, K.: The polygamma function $\psi (x)$ for $x=1/4$ and $x=3/4$. J. Comput. Appl. Math. , 75, 1996, 43-46, | MR
[15] Liu, H., Wang, W.: Harmonic number identities via hypergeometric series and Bell polynomials. Integral Transforms Spec. Funct., 23, 2012, 49-68, | DOI | MR | Zbl
[16] Mez?, I: Nonlinear Euler sums. Pacific J. Math. , 272, 1, 2014, 201-226, | DOI | MR
[17] Sitaramachandrarao, R.: A formula of S. Ramanujan. J. Number Theory, 25, 1987, 1-19, | DOI | MR | Zbl
[18] Sofo, A.: Computational Techniques for the Summation of Series. 2003, Kluwer Academic/Plenum Publishers, New York, | MR | Zbl
[19] Sofo, A.: Integral identities for sums. Math. Commun., 13, 2, 2008, 303-309, | MR | Zbl
[20] Sofo, A.: Sums of derivatives of binomial coefficients. Adv. in Appl. Math., 42, 2009, 123-134, | DOI | MR | Zbl
[21] Sofo, A.: Integral forms associated with harmonic numbers. Appl. Math. Comput., 207, 2, 2009, 365-372,
[22] Sofo, A., Srivastava, H. M.: Identities for the harmonic numbers and binomial coefficients. Ramanujan J., 25, 1, 2011, 93-113, | DOI | MR | Zbl
[23] Sofo, A.: Summation formula involving harmonic numbers. Anal. Math., 37, 1, 2011, 51-64, | DOI | MR | Zbl
[24] Sofo, A.: Quadratic alternating harmonic number sums. J. Number Theory, 154, 2015, 144-159, | DOI | MR | Zbl
[25] Srivastava, H. M., Choi, J.: Series Associated with the Zeta and Related Functions. 530, 2001, Kluwer Academic Publishers, London, | MR | Zbl
[26] Srivastava, H. M., Choi, J.: Zeta and $q$-Zeta Functions and Associated Series and Integrals. 2012, Elsevier Science Publishers, Amsterdam, London and New York, | MR | Zbl
[27] Wang, W., Jia, C.: Harmonic number identities via the Newton-Andrews method. Ramanujan J., 35, 2, 2014, 263-285, | DOI | MR | Zbl
[28] Wei, C., Gong, D.: The derivative operator and harmonic number identities. Ramanujan J., 34, 3, 2014, 361-371, | DOI | MR | Zbl
[29] Wu, T. C., Tu, S. T., Srivastava, H. M.: Some combinatorial series identities associated with the digamma function and harmonic numbers. Appl. Math. Lett., 13, 3, 2000, 101-106, | DOI | MR | Zbl
[30] Zheng, D. Y.: Further summation formulae related to generalized harmonic numbers. J. Math. Anal. Appl., 335, 1, 2007, 692-706, | DOI | MR | Zbl