Integrals of logarithmic and hypergeometric functions
Communications in Mathematics, Tome 24 (2016) no. 1, pp. 7-22 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Integrals of logarithmic and hypergeometric functions are intrinsically connected with Euler sums. In this paper we explore many relations and explicitly derive closed form representations of integrals of logarithmic, hypergeometric functions and the Lerch phi transcendent in terms of zeta functions and sums of alternating harmonic numbers.
Integrals of logarithmic and hypergeometric functions are intrinsically connected with Euler sums. In this paper we explore many relations and explicitly derive closed form representations of integrals of logarithmic, hypergeometric functions and the Lerch phi transcendent in terms of zeta functions and sums of alternating harmonic numbers.
Classification : 05A10, 05A19, 11B83, 11M06, 11Y60, 33C20
Keywords: Logarithm function; Hypergeometric functions; Integral representation; Lerch transcendent function; Alternating harmonic numbers; Combinatorial series identities; Summation formulas; Partial fraction approach; Binomial coefficients.
@article{COMIM_2016_24_1_a1,
     author = {Sofo, Anthony},
     title = {Integrals of logarithmic and hypergeometric functions},
     journal = {Communications in Mathematics},
     pages = {7--22},
     year = {2016},
     volume = {24},
     number = {1},
     mrnumber = {3546803},
     zbl = {1352.05012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a1/}
}
TY  - JOUR
AU  - Sofo, Anthony
TI  - Integrals of logarithmic and hypergeometric functions
JO  - Communications in Mathematics
PY  - 2016
SP  - 7
EP  - 22
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a1/
LA  - en
ID  - COMIM_2016_24_1_a1
ER  - 
%0 Journal Article
%A Sofo, Anthony
%T Integrals of logarithmic and hypergeometric functions
%J Communications in Mathematics
%D 2016
%P 7-22
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a1/
%G en
%F COMIM_2016_24_1_a1
Sofo, Anthony. Integrals of logarithmic and hypergeometric functions. Communications in Mathematics, Tome 24 (2016) no. 1, pp. 7-22. http://geodesic.mathdoc.fr/item/COMIM_2016_24_1_a1/

[1] Adamchik, V., Srivastava, H. M.: Some series of the zeta and related functions. Analysis, 18, 2, 1998, 131-144, | DOI | MR | Zbl

[2] Borwein, J. M., Zucker, I. J., Boersma, J.: The evaluation of character Euler double sums. Ramanujan J., 15, 2008, 377-405, | DOI | MR | Zbl

[3] Choi, J.: Log-Sine and Log-Cosine Integrals. Honam Mathematical J, 35, 2, 2013, 137-146, | DOI | MR | Zbl

[4] Choi, J., Cvijoviæ, D.: Values of the polygamma functions at rational arguments. J. Phys. A: Math. Theor., 40, 50, 2007, 15019-15028, Corrigendum, ibidem, 43 (2010), 239801 (1p). | DOI | MR

[5] Choi, J.: Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers. J. Inequal. Appl., 49, 2013, 1-11, | MR | Zbl

[6] Choi, J., Srivastava, H. M.: Some summation formulas involving harmonic numbers and generalized harmonic numbers. Math. Comput. Modelling., 54, 2011, 2220-2234, | DOI | MR | Zbl

[7] Chu, W.: Summation formulae involving harmonic numbers. Filomat, 26, 1, 2012, 143-152, | DOI | MR | Zbl

[8] Ciaurri, O., Navas, L. M., Ruiz, F. J., Varano, J. L.: A simple computation of $\zeta (2k)$. Amer. Math. Monthly., 122, 5, 2015, 444-451, | DOI | MR

[9] Coffey, M. W., Lubbers, N.: On generalized harmonic number sums. Appl. Math. Comput., 217, 2010, 689-698, | MR | Zbl

[10] Dattoli, G., Srivastava, H. M.: A note on harmonic numbers, umbral calculus and generating functions. Appl. Math. Lett. , 21, 7, 2008, 686-693, | DOI | MR | Zbl

[11] Devoto, A., Duke, D. W.: Table of integrals and formulae for Feynman diagram calculation. La Rivista del Nuovo Cimento, 7, 6, 1984, 1-39, | MR

[12] Flajolet, P., Salvy, B.: Euler sums and contour integral representations. Exp. Math., 7, 1, 1998, 15-35, | DOI | MR | Zbl

[13] Freitas, P.: Integrals of polylogarithmic functions, recurrence relations and associated Euler sums. Math. Comp., 74, 251, 2005, 1425-1440, | DOI | MR | Zbl

[14] Kölbig, K.: The polygamma function $\psi (x)$ for $x=1/4$ and $x=3/4$. J. Comput. Appl. Math. , 75, 1996, 43-46, | MR

[15] Liu, H., Wang, W.: Harmonic number identities via hypergeometric series and Bell polynomials. Integral Transforms Spec. Funct., 23, 2012, 49-68, | DOI | MR | Zbl

[16] Mez?, I: Nonlinear Euler sums. Pacific J. Math. , 272, 1, 2014, 201-226, | DOI | MR

[17] Sitaramachandrarao, R.: A formula of S. Ramanujan. J. Number Theory, 25, 1987, 1-19, | DOI | MR | Zbl

[18] Sofo, A.: Computational Techniques for the Summation of Series. 2003, Kluwer Academic/Plenum Publishers, New York, | MR | Zbl

[19] Sofo, A.: Integral identities for sums. Math. Commun., 13, 2, 2008, 303-309, | MR | Zbl

[20] Sofo, A.: Sums of derivatives of binomial coefficients. Adv. in Appl. Math., 42, 2009, 123-134, | DOI | MR | Zbl

[21] Sofo, A.: Integral forms associated with harmonic numbers. Appl. Math. Comput., 207, 2, 2009, 365-372,

[22] Sofo, A., Srivastava, H. M.: Identities for the harmonic numbers and binomial coefficients. Ramanujan J., 25, 1, 2011, 93-113, | DOI | MR | Zbl

[23] Sofo, A.: Summation formula involving harmonic numbers. Anal. Math., 37, 1, 2011, 51-64, | DOI | MR | Zbl

[24] Sofo, A.: Quadratic alternating harmonic number sums. J. Number Theory, 154, 2015, 144-159, | DOI | MR | Zbl

[25] Srivastava, H. M., Choi, J.: Series Associated with the Zeta and Related Functions. 530, 2001, Kluwer Academic Publishers, London, | MR | Zbl

[26] Srivastava, H. M., Choi, J.: Zeta and $q$-Zeta Functions and Associated Series and Integrals. 2012, Elsevier Science Publishers, Amsterdam, London and New York, | MR | Zbl

[27] Wang, W., Jia, C.: Harmonic number identities via the Newton-Andrews method. Ramanujan J., 35, 2, 2014, 263-285, | DOI | MR | Zbl

[28] Wei, C., Gong, D.: The derivative operator and harmonic number identities. Ramanujan J., 34, 3, 2014, 361-371, | DOI | MR | Zbl

[29] Wu, T. C., Tu, S. T., Srivastava, H. M.: Some combinatorial series identities associated with the digamma function and harmonic numbers. Appl. Math. Lett., 13, 3, 2000, 101-106, | DOI | MR | Zbl

[30] Zheng, D. Y.: Further summation formulae related to generalized harmonic numbers. J. Math. Anal. Appl., 335, 1, 2007, 692-706, | DOI | MR | Zbl